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Introduction
In an inpatient setting, bedside monitors are used to track the 
vital signs of critically ill patients. The monitors are pro-
grammed to sound an audible alarm when these vital signs 
move outside of a predefined range, alerting clinical staff that 
the patient may be deteriorating. These alarm systems are typi-
cally set up to have very high recall, ensuring that no concern-
ing vital signs are missed. Operating at a high recall often 
results in a system with low precision, with a large number of 
unnecessary alarms sounding. Exposure to many unnecessary 
alarms leads to clinical staff becoming desensitized to the 
sound of the alarm, a phenomenon known as alarm fatigue. 
Alarm fatigue has been shown to increase response time to 
alarms both in the short term, such as during a nurse’s shift,1 
and in the long term, such as over the course of a nurse’s career,2 
which can result in negative outcomes for patients. The US 
Food and Drug Administration (FDA) reported over 500 
alarm-related patient deaths over a 5-year period,3 and alarm 
configuration policies and practices have regularly made the list 
of top patient safety concerns.4–6 Surveys of nursing staff across 
the United States showed that an increasing proportion of 
nurses believe that alarm fatigue is disruptive to care, reduces 
trust in alarms, and can lead caregivers to inappropriately deac-
tivate alarms.7–9 Implementing measures to reduce alarm 
fatigue in the inpatient environment is therefore of critical 
importance.3,10

Previous attempts to alleviate alarm fatigue have focused on 
decreasing the number of bedside alarms. Methods for alarm 
reduction include a system to escalate alarms to pages sent 
directly to clinical staff,11 ensuring that alarms are not missed 
even if the relevant member of the care team is not physically 
in the unit. Unnecessary alarms can be decreased by ensuring 
that bedside monitors are reserved for the most critically ill 

patients. To this end, one institution moved to ensure that 
monitoring of all low-risk patients was discontinued in a timely 
manner,12 and another institution implemented a nurse-man-
aged monitor discontinuation process in an inpatient unit.13 A 
subset of premature ventricular contraction alarms were disa-
bled in one institution after studies showed that these alarms 
contribute a large amount of the noise load experienced in an 
inpatient unit, despite being largely non-actionable.14 The 
sound of an alarm is often configured to reflect the acuity of the 
event, so efforts have been taken to reconfigure the acuity of 
each alarm type, ensuring that only the most serious events will 
trigger a high-acuity alarm sound. Wearables have even been 
used to help nurses quickly triage clinical alarms.15 Approaches 
to alarm fatigue within the pediatric setting have been pro-
posed by Karnik and Bonafide.16 These have included limiting 
the patients who are monitored to those at the highest level of 
risk, careful application and regular changing of electrode sen-
sors to avoid artifact alarms, and carefully choosing the thresh-
olds for alarms to minimize unnecessary alarms. Existing 
research addressing alarm fatigue includes only limited evalua-
tion of the safety and efficacy of the proposed measures. The 
lack of robust evaluations can be attributed to the absence of 
large sets of gold-standard labels that indicate which alarms are 
crucial for patient safety and which alarms are unnecessary and 
should be suppressed.17–19 As a result, evaluation has typically 
been concentrated on the expected number of alarms that will 
be suppressed, with no consideration given to the appropriate-
ness of this suppression.

This study focuses on addressing alarm fatigue in a pediatric 
population, as the change in vital signs with age results in 
higher inter-patient variation compared to the adult popula-
tion.17,20 Research has shown that the default heart rate alarm 
thresholds in a pediatric hospital often fall near the 50th 
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percentile of heart rate values observed in the population,18,21 
causing alarms to be triggered for over half of the observed 
heart rates for some patients.

Our previous work used nurse-charted vital sign data to 
choose population-specific vital sign alarm thresholds.18 The 
thresholds calculated in this study were implemented in a pilot 
study in a 20-bed cardiac step-down unit, decreasing the num-
ber of alarms per monitored-bed-day, with no negative impact 
on patient safety observed.22 The age-group-based thresholds 
calculated were a step toward decreasing alarm fatigue; how-
ever, these thresholds had to be chosen conservatively to ensure 
that they were appropriate for the entire age group. Figure 1 
shows several patients from the 8-to-12-year age group for 
whom the alarm thresholds are not appropriate. If we can 
instead model the expected distribution of vital sign values for 
each patient, we can choose alarm thresholds specific to each 
patient. These personalized alarm thresholds can be set at the 
1st and 99th percentiles of the patient’s vital sign values, ensur-
ing that only the most extreme events will trigger an alarm.

This study aims to address vital sign alarm fatigue by find-
ing personalized alarm thresholds for heart rate and respiratory 
rate alarms. Models are trained to find vital sign alarm thresh-
olds on a patient-by-patient basis, rather than using patient 
groups. The personalized thresholds are initially built using 
data available at admission and are adjusted after observation 
of the patient’s own vital signs over a 2-hour period. A method 
to evaluate the resulting patient-specific alarm thresholds is 
also introduced. We identify alarms that had a setting chosen 
by a physician specifically for the patient of interest and use 

these alarm settings as the best available standard against which 
to evaluate our proposed thresholds.

Methods
Data

Two main sources of data were used for this study. The Philips 
Research Data Export (RDE) system at Stanford’s Lucille 
Packard Children’s Hospital (LPCH) has been recording vital 
sign waveforms for every patient who has had their vital signs 
monitored, both in intensive care units and on floor units, for 
the past several years. An extract from this system, containing 
3.5 years worth of data (December 5, 2012 to April 20, 2016) 
has been made available for research purposes. The extract con-
tains once per minute average heart rate and respiratory rate, as 
well as records of any vital sign alarms that were triggered. 
These data have been combined with an extract from the elec-
tronic medical record (EMR), obtained through StaRR, the 
Stanford Medicine Research Data Repository.23 StaRR con-
tains patient demographics and clinical data including ICD-9 
(International Classification of Diseases, Ninth Revision) 
codes and medication records. These datasets were linked using 
patient medical record numbers or using data showing which 
patient was in a specific bed location at the time data is avail-
able. This study was approved by the Stanford Institutional 
Review Board.

Diagnosis information.  Baseline vital signs are likely to vary 
based on the patient’s diagnosis.24,25 To incorporate this into 
our model, we use two surrogates for diagnosis: (1) the 

Figure 1.  Modeled heart rates for patients from a single age group (8-12 years). Each distribution represents a separate patient. Distributions are 

obtained by sampling 1000 points from a lognormal distribution parameterized by the observed mean and standard deviation of heart rate over the 

patient’s first 24 hours of monitoring. (A) The dashed vertical lines represent the 5th and 95th percentiles of heart rate observed for patients in this age 

group, the alarm thresholds as suggested by our previous study. The shaded regions are those that would trigger alarms. We see that the left-most 

distribution is almost entirely outside these alarm thresholds, so most of heart rate measurements from this patient would trigger a low heart rate alarm. 

We also see that the heart rate distribution from one of the patients is so narrow that very few heart rate measurements would trigger an alarm. The 

variation in vital signs among patients of the same group illustrates the weakness of alarm thresholds that are optimized for groups of patients and 

demonstrates the need for personalized alarm thresholds. (B) The heart rate values that would trigger an alarm if the observed 1st and 99th percentiles of 

heart rate are used as alarm thresholds. The shaded regions are those that would trigger alarms. Many fewer alarms would sound under this model, and 

alarms would be triggered for different thresholds for each patient.
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diagnosis-related group (DRG) and (2) the unit that the 
patient is being treated in.

The EMR extract includes DRGs,26 which are designed to 
group patients according to the medical services they receive, 
but can also be used to provide a rough grouping by clinical 
complaint. A total of 45 DRGs were present as admit diagno-
ses in the cohort of interest. DRGs that contained less than 10 
observations were combined into an “OTHER” group, leaving 
a total of 22 distinct DRGs. One-hot encoding was used to 
convert this categorical variable into 22 variables with Boolean 
values, with the constraint that for a given sample only one of 
the values can be set to 1. The inpatient units at LPCH are 
arranged such that patients with particular care needs are 
grouped together. For example, one unit typically houses 
patients with cardiac issues, while patients with pulmonary-
related problems are cared for in another unit. The department 
in which the patient is located was used as a feature in our 
model, as it provides a rough grouping according to diagnosis.

Imputing patient weight.  Including patient weight in the model 
is an important consideration, as body size is known to impact 
heart rate. Some patients did not have any weight data available 
or only had weight recorded distantly in time. We used stand-
ard pediatric growth charts27 to impute patient weights. If a 
weight measurement was available for a patient, growth charts 
were used to find which percentile the patient fell into for their 
age at the time that weight was recorded. The growth charts 
were then used to determine the weight that the patient would 
be at the time of vital sign recording, assuming that they 
remained in the same percentile. If patients had multiple 
weights recorded, the mean percentile was used. In total, 466 
patients had no weight data recorded, so were assumed to be at 
the 50th percentile of weight for their age. The percentile 
found for each patient was also recorded and used as an input 
to the models.

Modeling personalized alarm thresholds

There are two outcomes of interest for each patient, corre-
sponding to the high and low alarm thresholds. The proposed 
ideal values for these are the 1st and 99th percentiles of the 
patient’s observed vital signs over the first day of hospitaliza-
tion. The first 24 hours of monitoring for each patient was iso-
lated and processed. All data within this 24-hour period were 
considered, regardless of whether data were continuously 
recorded or included periods of missing vital sign data. Four 
values were extracted for each patient: the mean, standard devi-
ation, 1st percentile, and 99th percentile of the vital sign data 
available in this 24-hour period.

Lognormal assumption.  As stated above, the proposed ideal val-
ues for the low and high alarm thresholds are the 1st and 99th 
percentiles of the patient’s vital signs over the first day of 

hospitalization. Rather than using these values directly as the 
outcomes of interest, we model each patient’s vital signs over 
the first day of hospitalization using a lognormal distribution. 
Figure 2 shows that the 1st and 99th percentiles of the patient’s 
heart rate and respiratory rate are able to be accurately recov-
ered using this lognormal assumption. The lognormal distribu-
tion is parameterized by the mean and the standard deviation, 
as shown in equation (1), where VS  refers to the vital sign of 
interest, which in our study is heart rate or respiratory rate.

	 log( ) ( , )VS N VS VS∼ µ σ 2 	 (1)

We build two models for each vital sign, one to recover the 
mean value and the second to recover the standard deviation. 
The outputs of these models are used as the parameters of 
patient-specific lognormal distributions, from which the 
expected 1st and 99th percentiles of the patient’s vital signs are 
found, as shown in equations (2) and (3), where the constant 
defines how many standard deviations the percentile of interest 
is from the mean. These percentiles are the proposed alarm 
thresholds.

	 VS e1
2 3263

%
.= − +σ µ 	 (2)

	 VS e99
2 3264

%
.= +σ µ 	 (3)

Model structure.  Modeling the change in expected vital signs 
with age is an important component of building personalized 
alarm thresholds. We use loess models to capture the non-lin-
ear variation in the mean and the variance of the vital signs 
with age. The output of the loess models is then used as input 
to Bayesian additive regression tree (BART) models, along 
with additional demographic (age, weight, gender, ethnicity, 
and race) and diagnostic features (DRG and hospital depart-
ment). Five-fold cross validation is used, training the loess 
models on data from 80% of patients and using these models to 
obtain proposed thresholds for the remaining 20% of patients. 
By combining the testing data from each fold, we are able to 
obtain proposed thresholds for every patient. The parameters 
of the BART model were chosen using a second five-fold cross 
validation within each outer fold. The output from these mod-
els are used as the parameters of lognormal distributions to find 
the expected 1st and 99th percentiles of vital signs for each 
patient. These percentile values are proposed as personalized 
alarm thresholds and will be referred to as personalized 
thresholds.

The BART models calculate the posterior distribution 
around the variable of interest, allowing us to obtain not only 
the expected value of the variable but also an estimate of the 
error in this value. The BART model for the mean vital sign 
value therefore gives us both VS  and Var VS( ) , and the model 
for the variance of the vital sign gives us σVS

2  and Var VS( )
2

σ .
µ µ



4	 Biomedical Informatics Insights ﻿

Adapting thresholds.  The BART models allow us to estimate 
the mean and standard deviation of the patient’s vital signs, 
given the characteristics available at the time of admission. 
Once the patient has had their vital signs monitored for 2 
hours, we have additional data to inform the expected distribu-
tion of vital signs. This 2-hour period length was chosen to give 
enough time for the patient’s condition to begin to stabilize 
after being admitted, while still ensuring that the personalized 
thresholds are available as quickly as possible. We can use the 
output from the BART models to define the prior on each 
parameter of interest and update this distribution using the 
data observed, resulting in an expected distribution that has 
been informed by the patient’s own data. Using the 1st and 
99th percentiles of this distribution as vital sign alarm thresh-
olds ensures highly personalized thresholds.

Our prior distribution is defined in equation (1). To ensure 
that the posterior distribution is of the same form, we model 
the mean using a normal distribution and model the variance 
using an inverse-gamma distribution.

	 µ µ σVS VS VSN k∼ ( , ) 

2 	 (4)

	 σ α βVS Inv Gamma2 ∼ − ( , ) 	 (5)

The inverse-gamma distribution is characterized by α  and 
β , but from the BART model, we have the mean and variance 
of this distribution. We can use σVS

2  and Var VS( )
2

σ  to obtain 
α  and β  as shown in equations (6) and (7).
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σ
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A Bayesian update can now be performed to incorporate the 
ndata  points of observed data and obtain a posterior distribu-
tion for the vital sign of interest. To do this, we need one addi-
tional parameter: n0, the number of data points used to calculate 
the prior distribution. As our distribution came from the 
BART model and not directly from the data, the appropriate 
value for n0  is not clear. Experimentation showed that the  
posterior distributions were relatively constant when varying 
n0  between 1 and 0.5 times the number of unique patients  
in the training dataset. The parameters defining the posterior 

Figure 2.  Comparison of actual 1st and 99th percentiles of vital sign data observed over the first 24 hours of monitoring with the expected percentiles 

calculated using a lognormal model characterized by the observed mean and variance for the vital sign of interest. (A) 1st percentile of heart rate, R2 = 

0.929. (B) 99th percentile of heart rate, R2 = 0.857. (C) 1st percentile of respiratory rate, R2 = 0.933. (D) 99th percentile of respiratory rate, R2 = 0.749.
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distribution can then be calculated using the following equa-
tions. A tilde is used to indicate the updated parameters of the 
distribution.

	 µdata
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We can then use equations (2) and (3) to obtain the new 
suggested alarm thresholds from these updated estimates of 
the distribution mean and variance. The alarm thresholds 
obtained from this adaptive step are referred to as adapted 
thresholds.

Evaluations

The performance of the models can be evaluated by directly 
comparing the estimated 1st and 99th percentiles of the vital 
signs to the observed values for each patient. As a second evalu-
ation, a record of the alarms that sounded can be used to esti-
mate the proportion of alarms that would be suppressed if the 
suggested thresholds were implemented. However, both of 
these metrics fail to evaluate the clinical appropriateness of the 
proposed thresholds.

Physician-selected alarm thresholds.  To estimate the appropri-
ateness of the proposed alarm thresholds, we use the record of 
alarms that previously sounded in LPCH to find alarm thresh-
olds that do not match the default values, indicating that clini-
cal staff manually chose this threshold for the patient. Alarms 
with a setting that matched the policy at any point of the study 
were excluded. The most commonly used setting for each age 
group was identified, and alarms with this setting were also 
excluded.

Total number of alarms.  A record of the alarms that sounded is 
available, including the reading that caused the alarm to be 
triggered. We can examine these historic alarms to determine 
whether each alarm would have been triggered if the proposed 
thresholds were in use. As we only have a record of alarms that 
were triggered, we are unable to calculate the number of addi-
tional alarms that would have been triggered if the new thresh-
olds were used. To estimate the additional alarm load associated 
with the proposed thresholds, we compare the proposed 
thresholds to the age-based thresholds that were implemented 
as part of our previous study.18,22 Where the new thresholds are 
wider than the existing thresholds, no additional alarms would 
have sounded. If the new thresholds are narrower than the 
existing thresholds, implementation could lead to additional 
alarms.

Results
As shown in Figure 2, using the mean and standard deviation 
of a patient’s heart rate over a 24-hour period as parameters in 
a lognormal distribution gives an accurate estimate of the 1st 
and 99th percentiles of the heart rate over this period.

Figure 3 shows that the models are able to recover the 1st 
and 99th percentiles of the observed data. Incorporating the 
patient’s own data generally improves the estimate of the per-
centiles. This figure also includes a comparison of the age-
based thresholds proposed in our previous work with the 
observed percentiles.18

Figure 4 compares the thresholds from each source to the 
physician-selected alarm thresholds that were recorded in the 
RDE dataset. The low errors between the physician-selected 
thresholds and those produced by the models suggest that the 
use of 1st and 99th percentiles as threshold values is an appro-
priate one.

Table 1 shows the proportion of patients for whom the new 
proposed thresholds are wider than the age-based thresholds 
proposed in our previous work.18 Wider thresholds will result 
in fewer alarms. Figure 5 shows the number of alarms that 
would sound if each of the different sets of thresholds had been 
used. This analysis uses the list of alarms that were actually 
triggered over a 3.5-year period, so it is not a complete count of 
all alarms that would have sounded if the proposed thresholds 
had been implemented.

Discussion
The aim of this study was to find personalized vital sign alarm 
thresholds for hospitalized pediatric patients without requir-
ing input from clinical staff. One of the challenges to achiev-
ing this aim was determining an appropriate target for these 
thresholds. Due to the lack of a large set of labeled alarms to 
use in training a model, we needed to use the patient’s 
observed vital signs to choose targets for the threshold values. 
We chose to use the 1st and 99th percentiles of the observed 
vital sign values as the target alarm thresholds. Models were 
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trained to choose personalized thresholds using the patient 
characteristics available at the time the patient was admitted 
to the hospital. These thresholds were then adapted using the 
patient’s observed vital signs over the first 2 hours of moni-
toring. As shown in Figure 3, these models were able to accu-
rately estimate the 1st and 99th percentiles of each patient’s 
vital signs.

Being able to predict the observed percentiles of each 
patient’s vital signs is only useful for this study if these percen-
tiles are appropriate for use as alarm thresholds. By identifying 
alarms where the threshold did not match any default values, 
we were able to observe cases where an alarm threshold was 
chosen specifically for the patient of interest. We compared 
these physician-selected alarm thresholds to those produced by 
our models. As shown in Figure 4, our models propose thresh-
olds that are similar to the physician-selected thresholds. 
Incorporating the patient’s own data generally gives us a better 
estimate of the physician-selected thresholds. The agreement 
between our proposed thresholds and these physician-selected 
thresholds suggests that the choice of 1st and 99th percentiles 
of the observed vital signs as alarm threshold targets was an 
appropriate one. It also suggests that implementing our pro-

posed thresholds would decrease the number of patients requir-
ing physician-selected thresholds.

A set of gold-standard alarm labels would allow more rigor-
ous evaluation of the proposed alarm thresholds. In the absence 
of such labels, and given that there is currently no standard 
method for evaluating alarm thresholds before implementa-
tion, we believe that our attempt to assess the proposed alarm 
thresholds using physician-selected thresholds was appropriate 
and sufficient.

As shown in Table 1, the personalized and adapted alarm 
thresholds are generally wider than the age-group-based 
thresholds. Therefore, implementing our proposed thresholds 
will result in fewer alarms being triggered. The exception is low 
heart rate alarms, where the majority of patients are given nar-
rower thresholds. The narrower threshold for low heart rate 
alarms is unsurprising, as during the initial study it was noted 
that very few low heart rate values triggered alarms, and the 
low alarm thresholds were raised slightly.

This study involves updating the alarm thresholds to incor-
porate the patient’s own data at a single point in time. Although 
the same methodology could be used to repeatedly or even 
continuously update the alarm thresholds to better fit the 

Figure 3.  Comparison of the 1st and 99th percentiles of heart rate and respiratory rate, as observed over the first 24 hours of monitoring, with the 1st and 

99th percentiles calculated using our method. We propose these calculated percentiles as the personalized and adapted thresholds. (A) Comparison of 

the observed 1st percentile of heart rate with the calculated 1st percentile. (B) Comparison of the observed 99th percentile of heart rate with the 

calculated 99th percentile. (C) Comparison of the observed 1st percentile of respiratory rate with the calculated 1st percentile. (D) Comparison of the 

observed 99th percentile of respiratory rate with the calculated 99th percentile.
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patient’s data, we chose to limit to one update. This decision 
was made because of the difficulty in distinguishing between a 
slow trend in a vital sign due to the patient’s state improving 
and a trend due to deterioration. Continually adapting the 
thresholds with observed data may result in thresholds that 
move as the patient deteriorates, never sounding an alarm. A 
dataset that included precise labels of patient state would allow 
models to be built to distinguish between trends due to clinical 
improvement and those due to clinical deterioration, address-

ing this problem and ensuring that thresholds could be regu-
larly updated without fear of missing patient deterioration.

The age-based alarm thresholds from our previous study 
were easily implemented, as the Philips monitors allow profiles 
to be pre-programmed with alarm thresholds and activated 
when a new patient is admitted. Implementation of the thresh-
olds proposed in this study will be more difficult, as the meth-
ods rely on data from both the bedside monitor and the EMR. 
Currently, the Epic EMR is able to interface with the bedside 
monitors, pulling in data in real time to display in the patient’s 
record. To implement the proposed thresholds, data would 
have to travel in the opposite direction to set the alarm thresh-
olds within the bedside monitor, a functionality that is not cur-
rently supported. To avoid creating such a link, the alarm 
functionality could be moved to within the EMR itself, com-
bining patient characteristics with the data passed by the bed-
side monitor to determine when to sound an alarm.

Conclusions
In conclusion, this study describes methods to choose person-
alized heart rate and respiratory rate alarm thresholds for 

Figure 4.  Comparison of physician-selected alarm thresholds with the personalized and adapted thresholds we derive. Comparison with the age-based 

thresholds from our previous study are also shown as an indication of current practice. (A) Comparison of physician-selected thresholds for low heart rate 

with the proposed personalized and adapted thresholds. (B) Comparison of physician-selected thresholds for high heart rate with the proposed 

personalized and adapted thresholds. (C) Comparison of physician-selected thresholds for low respiratory rate with the proposed personalized and 

adapted thresholds. (D) Comparison of physician-selected thresholds for high respiratory rate with the proposed personalized and adapted thresholds.

Table 1.  Proportion of patients who have wider alarm thresholds using 
the proposed thresholds compared to the age-group-based thresholds. 
Wider thresholds will result in fewer alarms.

Threshold 
source

Heart rate (%) Respiratory 
rate (%)

Low High Low High

Personalized 
thresholds

92 82 95 89

Adapted thresholds 81 64 93 81
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pediatric inpatients. These thresholds are initially chosen based 
on patient characteristics available at admission and are adapted 
to incorporate vital signs observed over the first 2 hours of vital 
sign monitoring. The resulting adapted thresholds are similar 
to physician-selected thresholds and result in fewer alarms 
than the currently used thresholds. The adoption of personal-
ized thresholds for interpretation of vital signs has the poten-
tial to reduce the number of unnecessary alarms sounding, 
alleviating alarm fatigue among clinical staff and improving 
patient outcomes.
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