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Introduction and Background
Computerized Provider Order Entry (CPOE) is a core func-
tionality of electronic health records (EHRs) and is a system 
where health care providers enter medication orders for use in 
patient care. Clinical decision support (CDS), which provides 
assistance in clinical decision-making, is often implemented 
within CPOE. Electronic medication rules (eRules) help the 
prescriber determine whether a medication order is within rea-
sonable and safe parameters based on factors such as the weight 
and age of a patient.1 If an order does not satisfy the conditions 
of the eRule, it will produce an alert or some other form of 
notification to the prescriber.

Prescribers override CDS alerts for a variety of reasons. As 
clinicians are familiar with traditional dosing patterns (often 
through textbooks and other sources of truth), they will often 

ignore electronic alerts because they feel the system is over-
whelming or that the alerts are inaccurate, clinically inappro-
priate, or simply not helpful.2 All these factors contribute to 
alert fatigue, which increases overrides of medication order-
related CDS alerts.3 This raises safety concerns because clini-
cians are then more likely to ignore a correct alert (true positive) 
that may be lost among a sea of false-positive alerts.

In pediatrics, it is important that dosing eRules are accurate 
because medication dosing is extremely complex due to weight-
based factors and is prone to error.4-8 Weight-based prescribing 
errors are often due to single-dose overdoses that lead to adverse 
drug events (ADEs). Unfortunately, most of the eRules in mod-
ern CDS systems are not tailored for pediatrics and orders 
entered into CPOE produce high amounts of alerts. Improving 
the eRules to make the CDS more accurate for pediatrics will 
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theoretically reduce alert burden (thereby improving alert and 
CDS salience) and dosing errors, improving medication safety. 
Efforts have been made to change some of these rules and 
changes have been shown to reduce alerts on a small scale.9 
However, medication-related CDS on the whole is still imma-
ture in many health care organizations; specificity of the alerts 
themselves is frequently cited as a main cause.10 This phenom-
enon of poor attention to alerts is seen in both inpatient11 and 
outpatient environments.12 Very little evidence exists regarding 
the effectiveness of medication-related CDS interruptive order-
ing alerts (especially in pediatrics), and what does exist shows 
mixed results of effectiveness.13 Attempts to change the speci-
ficity and performance of alerts on a large scale is challenging as 
common vendor eRule databases contain hundreds of thou-
sands of records. The modification of medication rules is labor-
intensive and minor changes in dosing parameters of one 
medication formulation may require the modification of dozens 
of eRules due to the granularity of the databases. Proper con-
figurations of CPOE and CDS systems have the potential to 
mitigate this issue.14,15 Currently, there is no automatable, scal-
able, and efficient solution to this problem. The application of 
computational and mathematical modeling to historic prescrib-
ing data presents an opportunity to overcome these issues.

Objective
The objectives of this study were to (1) develop a mathematical 
model that can optimize eRule dosing parameters based on 
historical order data, (2) use the model to develop an algorithm 
that determines optimal medication dosing rule parameters, 
and (3) perform an offline simulation test and evaluate the pro-
cess, comparing the output against our institution’s existing 
operationally active eRules. Our hypothesis is that the model 
and algorithm will be able to empirically adjust the dosing rule 
parameters and will perform favorably when compared with 
the performance of current eRules.

Materials and Methods
Setting

Cincinnati Children’s Hospital Medical Center is a level-1 
trauma center with 628 licensed beds. It has 1.2 million patient 
encounters annually, including 30 000 admissions, 33 000 surger-
ies, 900 000 ambulatory encounters, and 125 000 emergency 
department visits. There are approximately 200 000 medication 
orders a month, which generate 75 000 dosing alerts. The institu-
tion implemented an enterprise EHR (EpicCare®, Verona, WI, 
USA) in 2007. The EHR is configured to use a combination of 
the Medi-Span (Wolters Kluwer Health, Philadelphia, PA, USA) 
drug dosing decision support rules and supplemented with cus-
tom dosing rules created and maintained by the pharmacy.

Dosing rules description

There are 2 sets of dosing rules used in this study: actual dosing 
rules and the model-generated dosing rules. The actual dosing rules 

are the electronic rules (eRules) that are used in the study site’s 
production CPOE system rules engine and clinical care. The 
actual dosing rules were purchased from a third-party vendor. 
All the dosing parameters for the candidate medications 
selected in this study were already customized and overrode the 
vendor’s default rule parameters. The model-generated dosing 
rules are the dosing rules output by the mathematical model 
created to optimize the rule parameters. The 2 sets of dosing 
rules represent different CPOE configurations for weight-
based dosing CDS. The theoretical performances of these sets 
of dosing rules were compared with demonstrate the viability 
and feasibility of the model-generated dosing rules (refer sec-
tions “Assessing the performance of the Model-generated 
Dosing Rules” and “Results”).

Clinical dataset for dosing rules model development

Historical medication order data from 2011 to 2015 were 
retrieved from a previously described decision support analytic 
data warehouse.9,16 A total of 5 medications were selected to 
use in developing the model: Acetaminophen, Ibuprofen, 
Diphenhydramine, Amoxicillin, and Ursodiol. The order 
counts and the Actual eRules in the CPOE of these medica-
tions are listed in Table 1. These medications were selected 
based on criteria that included frequency of ordering and fre-
quency of alerting. Ursodiol was selected because it was previ-
ously known to have a poor match between the formal dosing 
eRules and how it is ordered in practice. A pediatrician (ESK) 
aggregated different formulations for the selected medications 
based on ordering behavior (Table 2). For example, in our data-
set, Ibuprofen has formulations of suspension, tablets, chewa-
ble tablets, solution, and capsule. These were grouped together 
for analysis as those formulations are typically prescribed with 
the same dosing guidelines. The data were filtered for orders 
placed using weight-based dosing, eg, in milligram/kilogram. 
Orders placed using absolute dosing, eg, in milligrams, were 
excluded as the model calculated weight-based dosing param-
eters only. The data include all medication dosing orders that 

Table 1. Dosing rule parameters (actual eRule) and medication data 
counts.

MEDICATIOn ACTUAL ERULE ORDER COUnT

Acetaminophen 5-15 mg/kg 376 794

Diphenhydramine 0.1-1.5 mg/kg 163 225

Ibuprofen 4-11 mg/kg 42 884

Amoxicillin 8-45 mg/kg 61 323

Ursodiol 0-12a 10-15 mg/kg 1191

Ursodiol 12-99a 2-5 mg/kg* 39

Total 645 456

a Ursodiol has a different eRule for different age groups: the split was based on 
the construct of the current eRules.
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were attempted as well as orders canceled and removed by pre-
scribers after they attempted to sign the orders and received an 
alert.

Generation of the artif icial dataset

The mathematical model and optimization algorithms require 
dosing data to generate meaningful dosing rules. Using the 
assumption that future dosing behavior can be approximated 
using historical dosing data, we could generate dosing rules 
directly using historical data. A disadvantage of the direct use 
of historical data is that it neglects the potential for the appear-
ance of unseen doses in the future. For example, typographical 
mistakes where the user hits the wrong/multiple keys or unit 
errors where the user inputs the incorrect units could be rea-
sonably expected to occur eventually. For frequently ordered 
medications, the probability of an unseen dose appearing in the 
future would be small, but for infrequently ordered medica-
tions, using only historical data may not be sufficient. To incor-
porate the knowledge that doses unseen in historical datasets 
could appear in the future, we develop a model of future his-
torical dosing behavior that is statistically consistent with his-
torical dosing data and incorporates unseen doses.

The clinical dataset described in section “Clinical dataset 
for dosing rules model development” was used to generate an 
artificial dataset. Our artificial data model is based on 2 
assumptions: that future ordering behavior will match histori-
cal ordering behavior and that there exists doses that were 
unseen in the historical data but could appear in the future. 
Here, we use a frequentist statistical model based on these 
assumptions. Other approaches to generate meaningful artifi-
cial data such as Bayesian models can be used in lieu of this 
approach as the mathematical model and optimization algo-
rithm are indifferent to the origin of the data.

For large historical dosing datasets from commonly pre-
scribed medications such as Acetaminophen or Ibuprofen, the 
probability of a specific dose can be estimated using the maxi-
mum likelihood estimate (MLE), where the probability is the 
frequency of the specific dose divided by the total number of 
orders. A limitation in this approach is that doses that do not 

appear in the historical dataset have a zero probability of occur-
ring in the artificial dataset. Various data entry errors that 
might have not occurred historically but have a small but non-
zero probability of occurring in the future would be neglected 
from our study. It is important that the probability of these 
orders is not zero.

To address this limitation, we use an alternative statistical 
model to the MLE that assigns certain unseen dose orders a 
non-zero probability. Our statistical model uses Good-Turing 
frequency estimation (GTE)17-19 to generate the probability of 
set of seen and unseen dose orders.

From the historical dataset, we have the set, Dobserved, that 
contains all the observed dose orders and we can compute the 
frequency each dose is prescribed. We define the frequency of 
dose frequency, Nr , as the number of doses in Dobserved ordered 
with the frequency r . For example, N1 is the number of doses 
that were ordered only once in the dataset. The total number of 
orders can be computed from the frequency of frequency data 
by the relation

N r N
r

r=
=

∞

∑
1

.

The MLE estimate of the probability a specific dose is 
ordered r  times is p r Nr = /  and the probability of a dose not 
in Dobserved  is p0 0= . The GTE of the total probability of all 
unseen doses is estimated by

p N
N0

1= .

Note that this is the probability that any unseen dose will 
appear in the future, not the probability of a single, specific 
unseen dose. The probability of individual doses in Dobserved  
that appear with frequency r  is estimated by

p
r S N
NS Nr

r

r
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+( ) ( )
( )

+1 1 ,

where S Nr( )  denotes a smoothed frequency estimate gener-
ated by linear regression.17,20

Table 2. Medication formulation groupings.

MEDICATIOn CAp TAB CHEW 
TAB

SOLUTIOn LIqUID ELIxIR SUSpEnSIOn RECOn 
SUSpEnSIOn

GEL SyRUp TABLET 
DISpER 
SIBLE

Acetaminophen x x x x x x x x x x

Diphenhydramine x x x x x x  

Ibuprofen x x x x x  

Amoxicillin x x x x  

Ursodiol 0-12 x x  

Ursodiol 12-99 x x  
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The GTE estimates the total probability of all unseen dose 
orders but we need to generate specif ic dose values that are 
unseen. As the set of possible unseen orders is uncountably 
infinite, we will restrict it to a finite set of more probable unseen 
doses, Dunseen  containing N 0  elements. For each dose in 
Dunseen, we assign an equal probability

p
p
N

N
N N0

0

0

1

0
= = .

The set of all possible doses from the artificial data genera-
tor will be the union of the 2 sets D D D= ∪observed unseen. To 
generate artificial data from the GTE of the probabilities, we 
begin by computing the discrete cumulative distribution func-
tion (CDF) for the dose set D: for dose d ∈D

CDF d p d
d d

j
j

( ) = ( )
<
∑ ,

where d d d dj M0 1< < < <  are the sorted doses in D, M  is 
the total number of possible dose orders, and p d j( )  is the 
GTE of the probability of dose. As the CDF is a monotoni-
cally increasing function and 0 1″ ″CDF d( ) , we can use the 
CDF to map a uniform random variable, 0 1″ ″X , to a spe-
cific dose through the relation

d CDF d X
d j

j

= ( ) ≤
∈

max .
D

This relation is used to generate the artificial data by map-
ping a set of values from a uniform random distribution to a set 
of dose orders. Python (version 3.5.1, 2015; Python Software 
Foundation, Delaware, Beaverton, USA) was used to generate 
the historical frequency of frequency data, implement the 
GTE, and the artificial dose data and the respective histograms 
and to implement the following model and optimization algo-
rithm. A total of 100 000 order instances were generated for 
each medication.

Development of the dosing rule model

Based on our goal of decreasing alert burden to improve alert 
salience, we created a model to optimize CDS dosing eRules 
with the express intent of reducing alerts. The model evaluates 
a discrete number of possible rule range intervals, based on the 
number of alerts each range would produce when the artificial 
dataset is applied, ie, it assesses the number of theoretical alerts 
that would be generated with the model dosing limits. The 
multiple discrete combinations of dosing rule intervals consid-
ered are based on the values of where most of the medication 
dose orders occur, eg, as most dosing orders for Acetaminophen 
occur between 0 and 20 mg/kg, multiple combinations of rule 
intervals between 0 and 20 are considered. To find the optimal 
rule, we must assign a score to each one being considered. We 
developed a measure of the quality of any given rule. As it is 
mathematically easier to study the inverse of the quality of the 
dosing rules, we propose this measure as the inferiority score of 

a dosing rule. Our inferiority measure assigns a score to each 
rule based on the number of theoretical alerts produced. We 
assume that our quality measure of a given dosing rule depends 
on 2 factors:

1. The number of alerts produced by a set of simulated dosing 
data: our goal is to empirically create dosing rules that are 
both clinically accurate (increase true positive alerts and 
true negatives) and decrease alert burden (through reduc-
tion of false-positive alerts). A dosing rule that generates 
a large number of alerts will, in general, have a poor qual-
ity measure.

2. Length of the rule interval: This term penalizes the quality 
measure if the dosing interval size is larger than the 
length of the actual eRule, which is included to prevent 
the degenerative case where an arbitrary large interval 
that produces no alerts is acceptable.

The function will return an inferiority score for each dosing 
rule. A high inferiority score for a dosing rule range means that 
this rule is producing high amounts of alerts or that the rule 
interval is too large. A low inferiority score means that a dosing 
rule has few alerts and an acceptable interval size. Given a rule 
interval R x y= ( , ), where x  is the lower dosing limit and y  is 
the upper dosing limit and a series of dose orders, E, the meas-
ure of the inferiority, I , of a rule is defined as

I R E w A
N

w
y x
L

, ,( ) = +
−

1 2
0

where A  is the number of alerts generated from the set of 
orders, E; N  is the total number of orders in the dataset; L0  
is the length of the actual dosing rule interval; and w1  and w2  
are arbitrary weights. Each term is scaled so that the alert term 
is less than 1 and the other term has a value close to unity. The 
weights are arbitrary and affect the relative importance between 
the 2 terms. For example, having w w1 2>  implies that reduc-
ing the number of alerts is more important than reducing the 
interval length when improving the quality of the rule. Note 
that these 2 terms are proxies for false positives (total number 
of alerts) and false negatives (interval length) and the weights 
can be viewed as their relative importance. While these proxies 
are crude, they could be an improvement compared with the 
status quo until more accurate proxies are developed.

As multiple discrete combinations of dosing rules are con-
sidered, multiple inferiority scores are returned. The goal is to 
find the lowest inferiority score, which will be associated with 
a dosing rule interval.

Implementation of the dosing interval optimization 
algorithm

An algorithm was implemented to find the lowest inferiority 
score. The algorithm computed the inferiority scores for each 
dosing interval and stored the values in a grid where the 
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position in the grid corresponds to the lower and upper dosing 
rule limit. For optimization, the algorithm found the lowest 
score in the grid and returned the associated lower and upper 
rule limits of the dosing interval. Surface plots of the resulting 
grids were visualized using MATLAB (Release 2012b; The 
MathWorks, Inc., Natick, MA, USA).

Applying a weights simulation algorithm

In lieu of choosing the weights a priori, we developed an algo-
rithm that assesses the impact of various weights on the model 
output. We prioritize reducing the number of alerts, so we 
chose to restrict the weights where w w1 2> . As it is the relative 
sizes of the weights to each other, we set w2 1=  and scan the 
results for various values of w1. We use a modified form of the 
bisection method to search through the range of weight values, 
w1, looking for the critical weight values where changes in the 
model’s dosing rule output occur. Once each critical weight 
value was found, the associated dosing rules returned were 
recorded and considered as part of the model’s output. This 
provides a complete set of optimal dosing rules based on the 
relative importance of reducing the number of alerts to the 
interval length.

Assessing the performance of the model-generated 
dosing rules

Finally, we evaluated the theoretical performance of the model-
generated dosing rules compared with the actual dosing rules 
currently applied in the EHR. We computed the alert rates 
using our artificial dataset on each of the model dosing rules 
returned and the actual eRule. The alert rate is the percent of 
dosing orders that generate an alert for a given rule. We then 
used the alert rates to calculate the percent improvement of the 
returned dosing rules from the alert rate of the actual eRule as 

well as the number of alerts saved per 100 000 dosing orders. 
The integration and flow of all of these processes are shown in 
Figure 1.

Results
Artificial datasets were visualized using histograms (Figure 2). 
The insets allow the user to better understand the distribution 
of the lesser frequent doses.

After the model computation used the artificial data and a 
set of weight values to generate inferiority scores, the optimiza-
tion algorithm found the minimum value for this score and the 
output was visualized as shown in the example medications 
(Figure 3). This visualization permits the capability to under-
stand how prospective changes in the dosing rule parameters 
would affect the score. In the case of acetaminophen, the opti-
mal dosing range is 10-15 mg/kg. Decreasing the upper limit 
(eg to 13 mg/kg) would drastically impact the inferiority score, 
while increasing the lower limit to 13 mg/kg would not have 
such a profound affect.

Table 3 represents the results of the model output and 
weight simulation experiments; the different rules are the result 
of the model computation with the weights selected by the 
weight simulation algorithm. Varying the weights on the model 
terms output differing optimal rule ranges, with varying affects 
on alert rates and alerts saved. These tables allow users to 
quickly scan the model output and select most clinically appro-
priate rule thresholds that have the largest reductions in alert 
burden. Figure 4 demonstrates these gains graphically. Gains to 
commonly and uniformly prescribed medications such as ibu-
profen are modest as the threshold limits are widened (Figure 
4A; alert reduction gains of 2%-3%), while modest changes to 
threshold limits impart bigger gains in more heterogeneously 
prescribed medications such as Ursodiol (Figure 4B; 50%-
100% alert reduction).

Figure 1. Flowchart for generating and assessing empirically-derived dosing rules. process diagram for the study, showing the methods of the study 

integrated to produce data-driven dosing thresholds.
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Discussion
Current methods for adjusting medication dosing rules have 
many challenges and are largely predicated on time-consuming 
procedures that are dependent on expert opinion and knowl-
edge. The approach outlined in this study represents an alter-
native set of procedures for setting and adjusting electronic rule 

(eRule) dosing parameters, one that is empiric, scalable, and 
scientific. It uses data generated by the EHR through previous 
activities by prescribers (empiric), is automatable (thus scalable 
and addressing the current state of entirely manual adjust-
ment), and can serve as a basis for a CDS learning system.21 
This secondary use of data means that resources used to input 

Figure 2. Artificial dataset for (A) Acetaminophen and (B) Ursodiol 0-12 years. The large histograms show 2 examples of the distribution of the artificial 

dataset doses. The histograms in the insets show the less frequent doses; visualization of these less-frequent doses is difficult otherwise.

Figure 3. Surface plots of dosing rule interval limits; grid output from the optimization algorithm. Each dosing rule limits considered between 0 and  

20 mg/kg was assigned an inferiority score. The lowest inferiority score denotes the optimal dosing range as defined by a priori criteria. In both A and B, 

the lowest inferiority score returned was 10-15 mg/kg in this instance of weight values, thus the optimal dosing interval for both (A) Acetaminophen and  

(B) Ursodiol (0-12 years) is 10-15 mg/kg.
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Table 3. Weight value simulation dosing rule results.

WEIGHT RATIO 
(r = w1/w2)

ERULE RULE RAnGE (MG/KG) ALERT 
RATE

pERCEnT IMpROVEMEnT 
VS ACTUAL ERULE

ALERTS SAVED pER 100 000 
ORDERS VS ACTUAL ERULE

LOWER UppER

ACETAMInOpHEn

Actual eRule 5 15 1.20  

(2, 54) Model Rule 1 10 15 1.73 –44.19% –529

(55, 2734) Model Rule 2 7.5 15 1.21 –1.00% –12

(2735, 16 124) Model Rule 3 5 15 1.20 0.00% 0

(16 125, 24 000) Model Rule 4 3.5 15 1.14 0.05% 6

IBUpROFEn

 Actual eRule 4 11 0.75  

(16, 3571) Model Rule 1 5 10 0.76 –0.80% –6

(3572, 7117) Model Rule 2 5 15 0.75 –0.27% –2

(7118, 20 918) Model Rule 3 5 15 0.73 2.40% 18

(20 919, 21 938) Model Rule 4 2.5 15 0.73 2.66% 20

DIpHEnHyDRAMInE

 Actual eRule 0.1 1.5 1.25  

(1, 38) Model Rule 1 0.5 1 3.28 –166.64% –2133

(39, 1453) Model Rule 2 0.5 1.5 1.34 –6.25% –80

(1454, 56 578) Model Rule 3 0 1.5 1.25 –0.16% –2

>56 579 Model Rule 4 0 5 1.26 1.64% 21

AMOxICILLIn

 Actual eRule 8 45 2.06  

(1, 4) Model Rule 1 40 45 13.27 –544.03% –11 207

(5, 9) Model Rule 2 25 45 7.03 –241.41% –4973

(10, 11) Model Rule 3 20 45 5.26 –155.53% –3204

(11, 37) Model Rule 4 12.5 45 2.33 –13.25% –273

(37, 61) Model Rule 5 12.5 50 1.70 17.52% 361

(61, 1887) Model Rule 6 10 50 1.43 30.58% 630

(1888, 3250) Model Rule 7 7.5 50 1.42 31.07% 640

(3251, 3360) Model Rule 8 4.5 50 1.41 31.36% 646

URSODIOL 0-12

 Actual eRule 10 15 10.25  

(3, 7) Model Rule 1 10 15 10.25 0.00% 0

(8, 43) Model Rule 2 7 15 5.18 49.43% 5068

(44, 320) Model Rule 3 5 15 1.98 80.68% 8271

(321, 802) Model Rule 4 2 15 1.16 88.73% 9097

(continued on next page)
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Figure 4. Visual representation of rule % improvement vs actual eRule. “Actual eRule” label is directly beneath the bar representing the parameters or the 

actual dosing rule in clinical use. Other bars represent the comparison to different algorithmically derived dosing rule parameter choices. (A) Ibuprofen 

shows about 3% improvement in alert savings if the dosing rule is 5-15 mg/kg vs the actual eRule of 4-11 mg/kg. (B) Ursodiol shows significant 

improvement in alert reduction if the rule range is increased.

WEIGHT RATIO 
(r = w1/w2)

ERULE RULE RAnGE (MG/KG) ALERT 
RATE

pERCEnT IMpROVEMEnT 
VS ACTUAL ERULE

ALERTS SAVED pER 100 000 
ORDERS VS ACTUAL ERULE

LOWER UppER

URSODIOL 12-99

 Actual eRule 2 5 50.62  

(8, 24) Model Rule 1 5 10 16.08 68.24% 34 538

(25, 119) Model Rule 2 4 10 11.05 78.17% 39 564

(120, 237) Model Rule 3 4 14.5 4.08 91.94% 46 535

(238, 498) Model Rule 4 4 15 3.56 92.96% 47 052

data into the model are minimal—there is no requirement for 
gathering primary data as substrate. The mathematical model 
and algorithm are a feasible alternative solution to adjusting 
medication dosing rules.

The candidate medications for this study were carefully 
selected. Their commonality allows for plentiful data to serve 
as the foundation for our test data. They represent one end of 
the prescribing spectrum. Unfortunately, these medications are 
also commonly used for a multitude of clinical indications, and 
the eRules for these drugs have been heavily customized with 
great scrutiny. The results (Table 2) reflect as such. The dosing 
intervals are generally very liberal, which limits our ability to 
demonstrate a large alert savings. Heavy customization of the 
eRules has also led to a pre-study adjustment that limits the 
alert savings results, especially with Acetaminophen, Ibuprofen, 

and Diphenhydramine, all of which are dosed heterogeneously 
in our clinical environment.

The real value of the model and algorithm will be demon-
strated in less mainstream circumstances; in situations where 
dosing is more heterogeneous, rule customization has not been 
performed or customization thresholds have been configured 
that do not match clinical practice. The comparison of the 
model-generated dosing rules to the customized eRules for 
Amoxicillin and Ursodiol demonstrates a greater alert savings. 
The next step for this work should seek to validate the approach 
and demonstrate realized alert savings in a wider range and 
number of medication formulations.

Automating the process of dosing rule adjustment through 
this method does not alleviate the need for clinical judgment. 
Because the system generates several optimized possibilities for 

Table 3. (continued)
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dosing rule thresholds, clinicians with pharmacy expertise need 
to provide the context to (1) select reasonable parameters pre-
sented to them by the system and (2) ensure clinical validity 
before integrating into practice. The rule that decreases alert 
burden the most may not be clinically appropriate. Until the 
model has matured and can receive input regarding the validity 
of the rules, a human validator will continue to play a key role 
in the process and this role must understand the balance 
between alert burden from false positives and safety risks from 
false negatives. The goal of this work is to reduce that burden in 
creating better dosing rules, not eliminate the clinical expert entirely 
or fall prey to automation bias.22,23 This tool has the capability to 
rapidly assess all drug rules in a corpus in an automated fash-
ion, identify and prioritize candidate rules for editing based on 
the potential decrease in alert burden or other factors, and pre-
sent these rules to a human expert for validation and imple-
mentation. Like almost all informatics tools, the goal is to leverage 
the strengths and capabilities of both humans and machines. The 
system can become more intelligent and efficient with addi-
tional feedback, helping to identify and correct poor-quality 
rules. The efficient identification and correction of poor quality 
rules will lead to many attractive gains including decreases in 
alert burden through fewer false-positive alerts, improved 
EHR efficiency through a decrease in alert fatigue, and most 
importantly, potential decreases in medication errors as provid-
ers are able to pay more attention to the remaining alerts.9

This study has several limitations. First, we assumed that 
historical ordering patterns are representative of future order-
ing patterns. The inclusion of data across a long time span 
mitigates this concern somewhat, but methods to determine 
clinically accurate changing prescribing patterns (new indica-
tions and/or dosing for a medication outside of the normal 
dosing range) should be considered to overcome this limita-
tion. Another limitation is that the system is based on the 
assumption that historic prescribing patterns represent appro-
priate and safe dosing. It is possible that aspects of EHR con-
figurations (such as order sets) could introduce frequent unsafe 
orders, which could feed into the model and affect its output. 
At our institution, we have only witnessed this phenomenon on 
a small scale, but this limitation speaks to the importance of the 
role of the clinical validator in optimal dosing rule selection 
process and in evaluating for “false negative” instances, which 
could lead to a dosing error because no alert was activated.

The generated rules are not patient-specific and the algo-
rithm represents a population-based approach. While this 
could potentially lessen the clinical impact, with this method 
we could aggregate data across different populations or disease 
indication to come up with more specific rules for those 
patients. Unfortunately, most dosing rules in production sys-
tems are not currently patient-specific, including at our institu-
tion. As this becomes more common, our method will need to 
be expanded to account for this. Finally, as demonstrated with 
the results of this study, the largest gains in decreasing alert 

burden are minimized by previously implemented, well-con-
structed operational dosing rules. However, given the hundreds 
of thousands of dosing rules in vendor products, further study 
of this automated empiric approach will demonstrate which 
types of dosing rules (frequently used, most alerted, etc) will 
return the most value.

Future work includes augmenting the model with additional 
parameters to increase its accuracy. Incorporating factors such as 
the type of alerts produced and the override rate of alerts from 
clinicians’ behavior will be undertaken. Large-scale studies 
across more types of medications and prescribing environments, 
as well as for different indications for the same medications, 
should be performed to further add validity to this approach. 
The algorithm will be implemented in user-facing software as a 
tool for pharmacists to use in improving CDS systems. It could 
then be applied to both pediatric and adult populations.

Conclusions
Mathematical modeling using historic prescribing data can 
generate more clinically appropriate electronic dosing rule 
parameters. This approach represents an automatable and scal-
able solution that could help address alert fatigue and decrease 
medication dosing errors.
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