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Background
Introduction

Many proteins remain functionally unannotated. For example, it has been estimated 
that 1,936 (29%) of S. cerevisiae proteins and 6,612 (33%) of H. sapiens proteins remain 
functionally unannotated [1]. A popular way to uncover missing annotations is to trans-
fer functional knowledge across proteins of different species. This task of across-species 
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protein functional prediction is the focus of this paper. The orthogonal task of within-a-
species protein functional prediction, where a function of a protein in a species is pre-
dicted from function(s) of other protein(s) in the same species [2], is out of the scope.

Genomic and proteomic sequence alignment (henceforth referred to simply as 
“sequence alignment”) are commonly used for the task of across-species protein func-
tional prediction. Namely, the goal of sequence alignment is to identify regions of simi-
larity between compared sequences that likely arise from functional or evolutionary 
relationships between the sequences, which is why numerous studies have relied on 
the assumption that sequence-similar genes/proteins perform similar functions [2–4]. 
(Henceforth, we refer to genes and their protein products simply as proteins.) Conse-
quently, such studies have transferred function from an annotated protein to an unna-
notated protein if the two are sequence-similar [2–4]. However, many sequence-similar 
proteins do not perform the same function(s), i.e., are functionally unrelated, and many 
sequence-dissimilar proteins are functionally related [5]; by “functionally related”, we 
mean that, according to annotation data from Gene Ontology (GO) [6], proteins share 
at least k GO terms (typically, k is from 1 to 3), and by “functionally unrelated”, we 
mean that proteins share no GO terms [5, 7]. For example, of all yeast-human sequence 
orthologs from YeastMine [8], ∼ 42% are not functionally related [5]. Such discrepancy 
between sequence similarity and functional relatedness is because sequence alone does 
not dictate a protein’s function. Instead, proteins interact with each other in complex 
networked ways to carry out cellular functioning. So, we argue that accounting for pro-
tein-protein interactions (PPIs) in addition to sequence information will improve func-
tional prediction across species.

Luckily, large amounts of PPI network data are available [9]. Hence, network align-
ment (NA) can be used to compare PPI networks of different species, in order to find 
a “good” mapping between their nodes (proteins), i.e., a node mapping that uncovers 
regions of high network topological (and often sequence) conservation between the spe-
cies; conservation typically means similarity. So, analogous to sequence alignment, NA 
can be used to transfer functional knowledge between conserved (aligned) PPI network, 
rather than just sequence, regions of different species [10–14]. While we focus on com-
putational biology, NA is also applicable to many other domains [12].

NA can be categorized into several broad types, whose high-level input/output/goal 
differences are as follows (more detailed algorithmic differences between specific NA 
methods are discussed in section “Methods – Description of existing NA methods”). 
First, NA can be pairwise (aligns two networks) or multiple (aligns three or more net-
works) [10, 14]. We focus on pairwise NA because current multiple NA is more com-
putationally complex [15] and generally less accurate [16] than existing pairwise NA. 
Second, NA can be local or global [11, 14], like sequence alignment. Local NA aims to 
find highly conserved network regions but usually results in such regions being small. 
Global NA aims to maximize overall network similarity; while it usually results in large 
aligned network regions, these regions are suboptimally conserved. Both have their own 
(dis)advantages [11, 14]. (More on local versus global NA follows shortly.) Third, NA 
can be one-to-one (each node can be aligned to exactly one distinct node in another 
network) or many-to-many (a node can be aligned to more than one node in another 
network).
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Traditionally, given networks G1(V1,E1) and G2(V2,E2) , local NA has meant the same 
as many-to-many NA: a relation R ⊆ V1 × V2 . Also, global NA has meant the same as 
one-to-one NA: an injective function f : V1 → V2 . Over time, local one-to-one and 
global many-to-many NA methods have been proposed [11]. So, both local and global 
NA are now R ⊆ V1 × V2 . The two differ in how many nodes are covered by the aligned 
node pairs in R—much fewer for local than global NA. As global NA has received more 
attention recently than local NA [10, 14], we focus on global NA. Both one-to-one and 
many-to-many alignments can be used in our considered task of across-species protein 
functional prediction. Yet, it is many-to-many NA methods that are the state-of-the-art 
in this task, which is why our considered methods happen to be many-to-many.

Fourth, three NA method groups exist based on how input data are processed (Table 1 
and section “Methods – Description of existing NA methods”).

Motivation

Regardless of which NA category they belong to, almost all existing NA methods assume 
that it is topological similarity between nodes (i.e., a high level of isomorphism-like 
matching between their extended PPI network neighborhoods as captured by the nodes’ 
topological features) that corresponds to the nodes’ functional relatedness, and thus 
they try to align topologically similar nodes. However, multiple studies observed that 
while existing NA methods yield high topological alignment quality (many edges are 
conserved, i.e., the aligned network regions indeed have a high level of isomorphism-like 

Table 1  Three NA method groups based on how input data are processed

NA method group Description

Within-network-only Given two PPI networks, each node’s feature is calculated using only the 
topological information within the given node’s own network, hence 
the group name. The nodes’ topological features, which summarize the 
nodes’ extended PPI network neighborhoods, are then used in vari-
ous alignment processes (section “Methods – Description of existing 
NA methods”). For state-of-the-art NA methods from this group, the 
topological features are based on graphlets [17], which are subgraphs, 
i.e., small building blocks of networks.

Isolated-within-and-across-network Given two PPI networks and also sequence information for nodes across 
networks, each node’s topological feature is calculated in the same 
way as by within-network-only methods, and only afterwards is the 
sequence information combined with the topological features. The 
group name comes from the fact that both within-network topologi-
cal and across-network sequence information are used, but the two 
are initially processed in isolation from each other and are combined 
only after the fact. Then, the combined data are used in various 
alignment processes (section “Methods – Description of existing NA 
methods”). Note that within-network-only methods can easily be 
used as isolated-within-and-across-network methods when sequence 
information is available; the latter lead to better alignments than the 
former [11].

Integrated-within-and-across-network Given two PPI networks and sequence information for nodes across 
networks, the two networks are first “integrated” into one by adding 
across-network “anchor” links (edges) between the highly sequence-
similar proteins and only then is any feature extraction or alignment 
done. So, the third group uses both within-network topological and 
across-network sequence information. But, they first integrate the two 
data types and only then process them, hence the group name.
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match), their functional alignment quality is far from perfect (often, the aligned nodes 
are not functionally related) [11, 13, 14].

Recently, we attempted to understand this observation [5]. Namely, we questioned the 
key assumption of current NA—that topologically similar nodes correspond to func-
tionally related nodes. We found for both synthetic and PPI networks that no matter 
which topological similarity measure was used, the topological similarity of the func-
tionally related nodes was barely higher than the topological similarity of the function-
ally unrelated nodes [5].

This shocking result—the current NA assumption failing—led us to redefine the NA 
problem as a data-driven, i.e., supervised, framework, which learns from PPI network 
and protein functional data the relationship between proteins’ “topological relatedness” 
and their functional relatedness, without assuming that topological relatedness means 
topological similarity. To better understand this framework, we illustrate topological 
similarity versus topological relatedness in Fig. 1. Loosely speaking, topological related-
ness aims to account for data noisiness/incompleteness, evolutionary events, or other, 
yet-to-be-discovered factors that are likely to break the isomorphism-like assumption of 
the traditional topological similarity-based NA.

We named our topological relatedness-based NA framework TARA (data-driven 
NA) [5]. TARA uses supervised classification to learn what topological patterns 
should be aligned to each other. Given (i) a set of node pairs across the networks 
being aligned, such that the nodes in a given pair are functionally related, (ii) a set 

Fig. 1  Illustration of topological similarity versus relatedness. Suppose that: (i) PPI networks of yeast and 
human are being aligned, (ii) the toy networks shown are parts of the full networks, (iii) each node performs 
either the “green” or “yellow” function, and (iv) because of incompleteness/noisiness of PPI network data or 
molecular evolutionary events such as gene mutation, duplication or deletion the green functional module 
in human (nodes 1, 2, 3, and 9) has an extra protein compared to the green module in yeast (nodes a, b, and 
c), and the yellow module in yeast has an extra interaction compared to the yellow module in human. a A 
topological similarity-based NA method will align yellow nodes e, f, g, and h in yeast to green nodes 1, 2, 3, 
and 9 in human, because both node sets form the same subgraph—a square with a diagonal, i.e., because 
the set of yellow nodes in yeast are topologically more similar to the set of green nodes in human than to 
the set of yellow nodes in human. However, this alignment is functionally incorrect because yellow and 
green nodes perform different functions. b Instead, our NA framework based on topological relatedness will 
use the topological and functional data to learn that a triangle in yeast (a, b, and c) should be aligned to a 
square-with-diagonal in human (1, 2, 3, and 9) because both perform the same function (green), and that a 
square-with-diagonal in yeast (e, f, g, and h) should be aligned to a square in human (5, 6, 7, and 8) because 
both perform the same function (yellow). Then, in other parts of the networks, our framework will try to align 
these learned patterns, to transfer knowledge between them
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of node pairs across the networks such that nodes in a given pair are not function-
ally related, and (iii) graphlet-based network topological features of each node pair, 
TARA divides the node pairs into training and testing data. Then, it uses a classifier 
to learn from the training data what graphlet features distinguish between the func-
tionally related and functionally unrelated node pairs. Next, given node pairs from 
the testing data and their graphlet features, TARA predicts whether the nodes in a 
given pair are functionally related or unrelated. Node pairs predicted as functionally 
related are added to TARA’s alignment, and this alignment is given to an established 
across-species protein functional prediction methodology [11] to obtain a list of pro-
tein functional annotations (i.e., protein-GO term pairs).

By learning topological relatedness patterns, TARA outperformed, in the task of 
across-species protein functional prediction between yeast and human, three state-
of-the-art NA methods, WAVE [18], SANA [19], and PrimAlign [20]. To better 
understand the implications of these results, it is important to understand how each 
method works (Table 2). TARA, WAVE, and SANA are all within-network-only meth-
ods. They also all use graphlet-based topological node features. Their key difference is 
that TARA is supervised, ie., it uses topological relatedness, while WAVE and SANA 
are unsupervised, i.e., they use topological similarity. Thus, WAVE and SANA were 
the most fairly comparable methods to TARA. So, we could fairly evaluate whether 
moving from WAVE’s and SANA’s topological similarity to TARA’s supervision-based 
topological relatedness helped. TARA significantly outperformed WAVE and SANA, 
so we could conclude that it did help. PrimAlign is one of very few existing inte-
grated-within-and-across-network methods. Because PrimAlign was already shown 
to outperform many isolated-within-and-across-network methods [20] on the exact 
same data as in TARA’s evaluation [5], there was no need to evaluate TARA against 
any methods of that type. Importantly, TARA still outperformed PrimAlign, despite 
the former being a within-network-only method and hence not using any sequence 
information, unlike the latter. This already showed how powerful the supervised NA 
paradigm is. In this study, we push the boundary further. TARA “only” showed that 
going from unsupervised to supervised for within-network-only methods improved 
alignment accuracy. But, we already know that going from within-network-only to 
isolated-within-and-across-network in the unsupervised context improves accuracy 
[11], and that going from isolated-within-and-across-network to integrated-within-
and-across-network in the unsupervised context further improves accuracy [20]. So, a 
method that is both supervised and of the integrated-within-and-across-network type 

Table 2  Categories that relevant NA methods belong to

NA method Method group Feature type (Un)supervised?

WAVE Within-network-only Topology (graphlets) Unsupervised

SANA Within-network-only Topology (graphlets) Unsupervised

PrimAlign Integrated-within- and-across-network Topology (PageRank-like) and 
sequence

Unsupervised

TARA​ Within-network-only Topology (graphlets) Supervised

TARA-TS Integrated-within- and-across-network Topology (graphlets) and sequence Supervised

TARA++ N/A (TARA++ is the overlap of TARA’s and TARA-TS’s predicted protein-GO term annotations)
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should be the “best of both worlds”. Thus, here, we propose the first ever method of 
this type.

Our contribution

We first introduce TARA-TS (TARA​ within-network Topology and across-network 
Sequence information) as a novel method implementing the above idea. Then, for 
reasons discussed below, we integrate TARA and TARA-TS into our final method, 
TARA++. Figure  2 summarizes key ideas behind TARA-TS and our evaluation 
framework.

Like TARA, TARA-TS is supervised. Unlike TARA and like PrimAlign, TARA-TS 
extracts features from an integrated yeast-human network. As a solution to feature 
extraction, we leverage the extensive research on graph representation learning [21], 
which embeds nodes of a network into a low dimensional space such that network struc-
ture is preserved; the low-dimensional node representations are then used as node fea-
tures. Network embedding has primarily been studied on the methodological side in 
the domains of graph theory and data mining/machine learning, and on the application 
side in the domain of social networks [21–23]. So, given recently recognized promise 
of network embedding in the domain of computational biology [24], we apply it to this 
domain. Namely, TARA-TS generalizes a prominent network embedding method that 
was proposed for within-a-single-network machine learning tasks such as node clas-
sification, clustering, and link prediction, to the across-network task of biological NA. 

Fig. 2  Summary of TARA-TS and our evaluation framework. a TARA-TS aims to align two networks (in our 
study, yeast and human PPI networks). Besides the networks, TARA-TS also uses sequence similar yeast-human 
protein pairs as anchor links. See section “Methods – Data”. b From the networks and anchor links, TARA-TS 
builds an integrated yeast-human network and extracts integrated topology- and sequence-based features 
of node (protein) pairs. See section Methods – TARA-TS’s feature extraction methodology”. c Given the 
features, TARA-TS trains a classifier on a training set to learn what features distinguish between functionally 
related and functionally unrelated node pairs, and then the classifier is evaluated on a testing set. To perform 
this classification, yeast-human node pairs are labeled. If the two nodes in a given pair are functionally related 
(intuitively, share GO terms), they are labeled with the positive class; if they are functionally unrelated, they 
are labeled with the negative class. See section “Methods – Data”. Then, the set of labeled node pairs is split 
into training and testing sets to perform the classification. Only if classification accuracy is high, i.e., if TARA-TS 
accurately predicts functionally (un)related nodes to be functionally (un)related, does it make sense to use 
TARA-TS to create an alignment for protein functional prediction. d Node pairs from the testing set that are 
predicted as functionally related are taken as TARA-TS’s alignment. Note that relying on testing data only 
to create an alignment avoids any circular argument. See section Methods – TARA-TS’s feature extraction 
methodology”. e Any alignment, of TARA-TS or an existing NA method such as PrimAlign and TARA, can 
be given to a protein functional prediction framework to predict protein-GO term annotations. Then, the 
different methods’ alignments are evaluated in terms of their prediction accuracy (we also evaluate their 
running times). See section “Methods – Using an alignment for protein functional prediction”
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Given the node features extracted by network embedding, TARA-TS works just as 
TARA to produce an alignment. Then, we use this alignment for across-species protein 
functional prediction.

We compare prediction accuracy of TARA-TS (pairwise, global, many-to-many, 
integrated-within-and-across-network, supervised) with accuracies of TARA and Pri-
mAlign, as they are state-of-the-art NA methods that were already shown to outper-
form many other existing NA methods on the exact same data as what we use here. 
So, by transitivity, if TARA-TS is shown to be superior to TARA and PrimAlign, this 
will mean that TARA-TS is superior to the other existing methods as well. Also, of all 
existing methods, TARA and PrimAlign are the most similar and thus fairly compara-
ble to TARA-TS. Namely, TARA is pairwise, global, many-to-many, and supervised, like 
TARA-TS. The difference is that TARA is a within-network-only method while TARA-
TS is an integrated-within-and-across-network method (Table 2). PrimAlign is a pair-
wise, global, many-to-many, and integrated-within-and-across-network method, like 
TARA-TS. The difference is that PrimAlign is unsupervised while TARA-TS is super-
vised (Table 2). So, we can fairly test the effect of going from unsupervised to supervised 
for integrated-within-and-across-network methods.

When we compare TARA-TS against TARA, we actually compare whether using 
across-network sequence information on top of within-network topological information 
leads to more accurate predictions, as we expect. Surprisingly, we find that TARA-TS 
and TARA are almost equally as accurate. Closer examination reveals that their quan-
titatively similar results are not because the two methods are predicting the same infor-
mation (which would make one of them redundant). Instead, their predicted protein 
functional annotations are quite complementary. So, we then look at those predictions 
(protein-GO term associations) that are made by both methods, only those predic-
tions made by TARA-TS but not TARA, and only those predictions made by TARA but 
not TARA-TS. We find the former (the overlapping predictions) to be more accurate 
than the predictions made by any one of TARA-TS or TARA alone. Thus, we take this 
overlapping version of TARA-TS and TARA as our final method, TARA++. In a sense, 
TARA++ is integrating state-of-the-art research knowledge across computational biol-
ogy and social network domains, by combining TARA’s graphlet-based topology-only 
features with TARA-TS’s embedding-based topology-and-sequence features, each of 
which boosts the other’s performance. Very few studies have explored such a promising 
direction to date [24]. Importantly, we find that TARA++ not only outperforms TARA 
but also PrimAlign.

Methods
Data

As typically done in NA studies, we analyze yeast and human PPI networks. We consider 
the exact same PPI networks of yeast (5,926 nodes and 88,779 edges) and human (15,848 
nodes and 269,120 edges) that were analyzed and publicly provided by the authors of the 
PrimAlign study [20]. These networks were also used in the TARA study [5]. All of this 
allows us to fairly compare results across all of the methods. The two networks contain 
only physical PPIs, without multi-edges or self-loops.
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Similarly, as anchor links between proteins across the networks, we use the exact 
same 55,594 yeast-human sequance-similar protein pairs that were analyzed and pub-
licly provided by the authors of the PrimAlign study [20]. These had been produced 
as follows [25]. All-versus-all sequence comparison using BLASTP [26] was per-
formed on human, mouse, fruit fly, worm, and yeast. Only protein pairs with E-value 
sequence similarities ≤ 10−7 had been kept for further consideration, which yielded 
55,594 yeast-human protein pairs with such E-values.

Our supervised NA framework requires knowledge about whether two proteins are 
functionally related. We next outline the procedure for determining functional relat-
edness, which mirrors the steps from our past TARA study [5]. As typically done, 
we define functional relatedness using GO annotation data (from August 2019). Con-
sidering biological process GO terms and experimentally inferred protein-GO term 
annotations (evidence codes EXP, IDA, IPI, IMP, IGI, or IEP), if at least k GO terms 
are shared between a yeast protein and a human protein, we define that protein pair 
as functionally related. We vary k from 1 to 3. These are values of k that are typi-
cally analyzed, because even in unsupervised and especially in supervised NA studies, 
larger values of k result in insufficiently many pairs of functionally related nodes [5, 
7]. Regardless of the k value, we define a protein pair as functionally unrelated if the 
two proteins share no GO terms of any kind. This gives the atleast1-EXP, atleast2-
EXP, and atleast3-EXP ground truth datasets.

Traditionally, NA studies have considered all GO terms available in a given ground 
truth dataset. However, it is well known that not all GO terms are “created equally”, 
meaning that a GO term that is more general and thus higher in the GO tree hierar-
chy is more likely to annotate a given number of proteins compared to a more specific 
GO term that is lower in the hierarchy. This is why it might be worth considering only 
specific-enough GO terms. As a way to deal with this in the context of NA, recent 
work proposed accounting for the frequency of GO terms (for a given GO term, the 
number of proteins in the data under consideration that are annotated by that term) 
[27]. Indeed, in our TARA study, we found that considering rarer (i.e., more specific) 
GO terms led to higher protein functional prediction accuracy [5]. So, here, we con-
sider the same three GO term rarity thresholds as in the TARA study: (i) all GO terms 
(i.e., ALL), which corresponds to traditional NA evaluation, (ii) more specific GO 
terms that appear 50 times or fewer (i.e., threshold of 50), and (iii) even more specific 
GO terms that appear 25 times or fewer (i.e., threshold of 25).

For a given GO term rarity threshold, all GO terms not satisfying the threshold 
are filtered out. Then, for each atleastk-EXP ground truth dataset, only proteins that 
share at least k GO terms from the remaining list are considered to be functionally 
related, and still, proteins that share no GO terms, regardless of rarity, are considered 
to be functionally unrelated. For example, proteins that share at least two (experimen-
tally inferred biological process) GO terms, such that each GO term annotates 25 or 
fewer proteins, are considered functionally related in the “atleast2-EXP at the 25 GO 
term rarity threshold” dataset. There is a total of nine such “ground truth-rarity” data-
sets, resulting from combinations of the three atleastk-EXP ground truth datasets and 
the three GO term rarity thresholds.
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TARA‑TS’s feature extraction methodology

TARA-TS needs to extract features that capture both within-network topological and 
across-network sequence information from the integrated network, which consists of 
21,774 nodes (5,926 yeast + 15,848 human proteins) and 413,493 edges (88,779 yeast 
PPIs + 269,120 human PPIs + 55,594 anchor links). We examine several feature extrac-
tion approaches.

First, we use the same graphlet-based feature extraction method as TARA, simply 
applied to the integrated network rather than the two individual networks; for techni-
cal details about the graphlet features that we use, see Additional file 1: Section S1.1.1. 
In this way, we can test whether going from TARA’s within-network-only approach to 
TARA-TS’s integrated-within-and-across-network approach improves NA accuracy. We 
refer to this version of TARA-TS as “TARA-TS (graphlets)”.

Second, we apply a prominent network embedding method based on random walks to 
the integrated network to extract features, namely node2vec [28]; for technical details 
about node2vec and why we use node2vec over other network embedding methods, 
see Additional file 1: Section S1.1.2. We refer to this version of TARA-TS as “TARA-TS 
(node2vec)”.

Third, node2vec does not capture heterogeneous information in the integrated net-
work, i.e., does not distinguish between different types of nodes (yeast and human) or 
edges (yeast PPIs, human PPIs, and yeast-human sequence-based anchor links). So, we 
also test metapath2vec [29], which essentially is node2vec generalized to heterogene-
ous networks. Intuitively, this approach uses “metapaths” to capture the heterogeneous 
information, which define the types of nodes that should be visited by random walks; for 
technical details about metapath2vec, see Additional file 1: Section S1.1.3. We refer to 
this version as “TARA-TS (metapath2vec)”.

Henceforth, we refer to TARA-TS (graphlets), TARA-TS (node2vec), and TARA-TS 
(metapath2vec) as different “TARA-TS versions”. If we just say “TARA-TS”, the discus-
sion applies to all three versions.

In theory, the heterogeneous information could be captured not just via metapaths 
but also via heterogeneous graphlets [30] (versus homogeneous graphlets discussed thus 
far). However, in practice, heterogeneous graphlet counting is infeasible for as large net-
works as studied in this paper, due to its exponential computational complexity. This is 
not an issue for homogeneous graphlet counting because methods such as Orca [31] rely 
on combinatorics to infer the counts of some (larger) graphlets from the counts of other 
(smaller) graphlets, significantly reducing the computational complexity. However, no 
publicly available implementation of combinatorial relationships for counting hetero-
geneous graphlets exists. Similar holds for a method that directly extracts the feature 
vector of a node pair [32], versus extracting graphlet features of individual nodes and 
then combining these, as TARA does: no combinatorial approach for direct node pair 
graphlets exists. Instead, current heterogeneous and node pair graphlet counting require 
exhaustive graphlet enumeration and are thus infeasible.

Lastly, we discuss why we do not use feature vectors from PrimAlign, the next most 
comparable method to TARA [5] that already integrates within-network topological and 
across-network sequence information. This is because PrimAlign’s algorithmic design 
does not allow for feature vector extraction. As discussed in more detail in section 
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“Methods – Description of existing NA methods”, PrimAlign models the integrated net-
work as a Markov chain, which is then repeatedly transitioned until convergence. This 
means that the weights between every node pair are updated at the same time, based on 
the weights of every node pair from the previous state of the chain. So, PrimAlign oper-
ates on every node pair at once with respect to their weights, rather than on individual 
nodes or node pairs with respect to any kind of feature vector, meaning that we cannot 
easily extract such information.

TARA‑TS’s classification and alignment generation

We must first evaluate whether TARA-TS can correctly predict nodes as functionally 
(un)related. If not, there would be no point to use it to form an alignment. To evaluate 
this, we train and test a classifier as follows.

For a given ground truth-rarity dataset (section “Methods – Data”), the positive class 
consists of functionally related node pairs, and the negative class consists of function-
ally unrelated node pairs. Because the latter is much larger, we create a balanced dataset 
by undersampling the negative class to match the size of the positive class, as typically 
done [33]. Due to randomness in sampling, we create 10 balanced datasets and repeat 
the classification process for each, averaging results over them.

For a given balanced dataset, we split it into two sets: y percent of the data is ran-
domly sampled and put into one set, and the remaining (100− y) percent is put into the 
other set. This sampling is done with the constraint that in each of the two sets, 50% of 
the data instances have the positive class and 50% have the negative class. Again, due to 
randomness in sampling, we repeat this 10 times to create 10 data splits of y/(100− y) 
percent and repeat the classification process for each, averaging results over them.

For a given y/(100− y) split, we train a logistic regression classifier on the set contain-
ing y percent of the data (the training set). We use this trained classifier to predict on 
the remaining (100− y) percent of the data (the testing set), measuring the accuracy and 
area under receiver operating characteristic curve (AUROC).

In summary, for a given y, for each balanced dataset, we have 10 accuracy and 10 
AUROC scores, corresponding to the 10 data splits; for each measure, we compute the 
average over the 10 splits, obtaining a single accuracy and single AUROC. Then, for a 
given y, given the single accuracy and single AUROC for each balanced dataset, i.e., 
given 10 accuracy and 10 AUROC scores for the 10 balanced datasets, for each measure, 
we compute the average over the 10 balanced datasets to obtain a final accuracy and a 
final AUROC score for that y. In our evaluation, we vary y from 10 to 90 in increments 
of 10; each variation is called a “y percent training test”. This allows us to test how the 
amount of training data affects the results, which is important because in many real-
world applications, not much data may be available for training.

Only if the average accuracy and AUROC are high, i.e., if TARA-TS accurately predicts 
functionally (un)related nodes to be functionally (un)related, does it make sense to use 
TARA-TS to create an alignment for protein functional prediction. If this is the case, we 
create an alignment as follows. Given one y/(100− y) split and the classifier trained on 
it, we take every node pair from the testing set that is predicted as functionally related 
and add it to the alignment. Here, it is important to only use the testing set for the align-
ment. This way, because there is no overlap between node pairs in the testing set and 
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node pairs in the training set, the alignment will not contain any node pairs that were 
trained on. Consequently, this avoids a circular argument when constructing TARA-TS’s 
alignment. For simplicity, we do not repeat this process for all data splits, as we found 
that the split choice had no major effect on the classification performance. We only 
use the “first” one, which in our implementation corresponds to a starting seed of 0 for 
Python’s random number generator when performing sampling. We have a total of 270 
alignments, corresponding to all combinations of the 3 TARA-TS versions, the 9 percent 
training tests, and the 10 balanced datasets.

Using an alignment for protein functional prediction

An ultimate goal of biological NA is across-species protein functional prediction, so 
each NA method must be evaluated in this context. We use a (TARA-TS’s or an exist-
ing method’s) alignment in an established protein functional prediction framework 
[11], as follows. Suppose that we are evaluating an alignment for the ground truth-rarity 
dataset atleastk-EXP at the r GO term rarity threshold (e.g., atleast2-EXP at the 25 GO 
term rarity threshold). Let us define “relevant GO terms” as all GO terms in that ground 
truth-rarity dataset. Then, the framework makes predictions for each protein u in the 
alignment that is annotated by at least k relevant GO terms (i.e., for each protein for 
which a prediction can actually be made at that ground truth-rarity dataset). To do so, 
first, the framework hides u’s true GO term(s). Then, for each relevant GO term g, the 
framework determines if the alignment is significantly “enriched” in g. The hypergeo-
metric test is used for this, in order to calculate if the number of aligned node pairs in 
which the aligned proteins share g is significantly high (see below). If so, then node u is 
predicted to be annotated by GO term g. Repeating for all applicable proteins and GO 
terms results in the final list of predicted protein-GO term associations. From this pre-
diction list, the framework calculates the precision (percentage of the predictions that 
are in a given ground truth-rarity dataset) and recall (percentage of the protein-GO term 
association from a given ground truth-rarity dataset that are among the predictions).

The hypergeometric test works as follows. If Y is the set of all yeast proteins and H is 
the set of all human proteins, then let M = {(y, h) ∈ Y ×H | each of y and h is anno-
tated by at least k relevant GO terms} . Let N = {(y, h) ∈ M | each of y and h is anno-
tated by g} . Note that g refers to the same GO term as in the previous paragraph. If A 
is the alignment of interest, let O = {(y, h) ∈ A | each of y and h is annotated by at least 
k relevant GO terms} . Finally, let P = {(y, h) ∈ O | each of y and h is annotated by g} . 
Then, the p-value resulting from the hypergeometric test is the probability of seeing |P| 
or more successes (i.e., node pairs that share g) if we randomly choose |O| elements from 
M given that M contains |N| successes (for example, in Python, this would correspond 
to 1 - scipy.stats.hypergeom.cdf(|P| − 1 , |M|, |O|, |N|)).

We ensure that there is no circular argument when predicting an annotation between 
a protein u and a GO term g from the alignment of interest, even if this particular anno-
tation might have been used to construct the training data. Namely, to predict protein 
u as being annotated by GO term g, u must have been aligned to some protein v that 
also has GO term g, in order for the functional knowledge g to be transferred from v 
to u. For this to happen, node pair (u, v) must have appeared in the testing data (and 
been predicted as functionally related, thus being placed into the alignment). This means 
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that (u, v) could not have appeared in the training data, because the training and testing 
data do not overlap (section “Methods – TARA-TS’s classification and alignment gen-
eration”). Even if some other node pair (u, w), where both u and w are annotated by g, 
appears in the training data, which could happen only if u is annotated by g and w is 
annotated by g, the prediction from the alignment of u having g could not have origi-
nated from the pair (u,  w) that the alignment was trained on. Instead, this prediction 
must have originated from node pair (u, v) that is not in the training data. This avoids a 
circular argument when predicting protein-GO term annotations.

Description of existing NA methods

Here, we describe existing NA methods to explain why we ultimately compare against 
TARA and PrimAlign out of all existing methods.

First, we discuss within-network-only and isolated-within-and-across-network meth-
ods. They have two parts. First, similarities are computed for all pairs of nodes across 
networks. For within-network-only methods, these are topological similarities (com-
puted by comparing the nodes’ topological features). For isolated-within-and-across-
network methods, these are a weighted sum of the nodes’ topological and sequence 
similarities. Second, an alignment strategy aims to maximize the total similarity over all 
aligned nodes while also conserving many edges. Two types of alignment strategies exist. 
One type is “seed-and-extend”, which progressively builds an alignment by adding to it 
one node pair at a time. WAVE [18], when paired with graphlet-based topological simi-
larities, is a state-of-the-art method of this type. The other type is a “search algorithm” 
that optimizes an objective function over the solution space of possible alignments. We 
pioneered search algorithm-based NA with MAGNA and MAGNA++ [34, 35]. The 
more recent SANA [19] is a state-of-the-art approach of this type, whose objective func-
tion is generally graphlet-based.

Next, we discuss integrated-within-and-across-network NA methods. PrimAlign 
[20] is a state-of-the-art method of this type. After linking networks being aligned via 
anchors, PrimAlign creates a Markov chain out of the integrated network, converting the 
edge weights to transition probabilities (in an unweighted network, the weights are set 
to 1 before converting to transition probabilities). The chain is then transitioned repeat-
edly until it converges, which redistributes the across-network node pair scores using a 
PageRank-like algorithm. Node pairs across networks that are above some threshold are 
outputted as the alignment.

MUNK also links the original networks via anchors, but it uses matrix factorization 
to obtain an alignment [36]. In our preliminary analyses, MUNK’s similarity scores 
could not distinguish between functionally related and functionally unrelated proteins. 
Furthermore, Nelson et al. [24] found IsoRank [37] to outperform MUNK, despite the 
former being an early method and the latter a recent method. IsoRank was already out-
performed by many NA methods that appeared after it, which in turn were outper-
formed by WAVE and SANA, which were then outperformed by TARA and PrimAlign 
(see below). Thus, because we compare against TARA and PrimAlign in this study, there 
is no need to also compare against MUNK.

Unlike TARA++, the previously mentioned methods do not use functional (GO) 
information to produce alignments but only to evaluate them. DualAligner [38] does 
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use such information, but not to determine classification labels (“functionally related” 
and “functionally unrelated”) like TARA++ does. Instead, the method aligns groups of 
nodes that are all annotated with a given GO term, and then seeds-and-extends around 
these groups to match proteins that do not have any GO annotations, resulting in the 
final alignment. We do not consider DualAligner in this study, as it is quite old (from 
2014). More recent, state-of-the-art methods have appeared since [10, 14].

The above methods are unsupervised. Many other such methods exist [14]. TARA and 
PrimAlign, which we consider in this study, already outperformed the other methods, 
including AlignMCL, AlignNemo, CUFID, HubAlign, IsoRankN, L-GRAAL, MAGNA, 
MAGNA++, MI-GRAAL, NETAL, NetCoffee, NetworkBLAST, PINALOG, SANA, 
SMETANA, and WAVE [5, 18–20]. In turn, these outperformed GHOST, IsoRank, 
NATALIE, PISwap, and SPINAL [19]. This, plus TARA and PrimAlign being the most 
similar and thus fairly comparable to TARA++, is why we focus on these two existing 
methods. Also, some supervised methods (besides TARA, already discussed) exist, as 
follows.

IMAP [39] uses supervised learning differently than TARA++. As input, IMAP 
requires a starting (unsupervised, topological similarity-based) alignment between two 
networks; as such, it still suffers from the topological similarity assumption. Then, it 
obtains graphlet features for node pairs. Node pairs from the starting alignment form 
the positive class, while the other node pairs are sampled to form the negative class. 
Then, IMAP trains a linear regression classifier on these two classes. After, this data is 
“re-classified”, but instead of assigning a class, IMAP assigns a score corresponding to 
the probability that the two nodes should be aligned. A matching algorithm (e.g., Hun-
garian) is applied to these scores to form a new alignment, which is then fed back to 
IMAP. This process iterates while alignment quality improves. We did try to test IMAP. 
Its code was not available. Our attempts at implementing IMAP ourselves led to signifi-
cantly worse results than those reported in the IMAP paper. So, we could not consider 
IMAP in our evaluation.

MEgo2Vec [40], also supervised, is a social NA method for matching user profiles 
across different online media platforms. Features of user profiles are obtained using 
graph neural networks and natural language processing techniques, and these are used 
to train a classifier to predict whether two profiles from different platforms correspond 
to the same person. A big part of MEgo2Vec is the various natural language processing 
techniques to match users’ names, affiliations, or research interests, meaning that it can-
not be easily applied to PPI networks.

Results
Comparison of TARA‑TS versions

Classification. Here, we study classification performance of the three TARA-TS versions 
(graphlets, node2vec, metapath2vec) and TARA, i.e., how correctly they predict as func-
tionally (un)related the protein pairs from testing data in a given y percent training test. 
We would ideally do this on all nine ground truth-rarity datasets. However, two of them, 
atleast3-EXP at the 50 and 25 thresholds, are too small for TARA-TS and TARA to per-
form any classification on; data scarcity is a general challenge that machine learning 
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methods face though, and not specific to just TARA-TS and TARA. Thus, we have seven 
viable ground truth-rarity datasets.

Due to space constraints, we discuss the effect of various parameters (k in atleastk-
EXP, GO term rarity threshold, and y percent training test) on the classification perfor-
mance of a given TARA-TS version, for each version, in Additional file 1: Section S2.1. 
Instead, here we focus on comparing the three TARA-TS versions and TARA.

We expect all TARA-TS versions to have higher accuracy and AUROC than TARA, as 
they extract topology plus sequence features from the integrated yeast-human network, 
unlike TARA, which extracts topology features only within each individual network. 
However, we find that this is not always the case (Fig. 3a and Additional file 1: Figs. S2–
S3): (i) The relative accuracy change of TARA-TS (graphlets) over TARA ranges from 
−3% (decrease) to 5% (increase), depending on the atleastk-EXP ground truth dataset, 
GO term rarity threshold, and y percent training test, with an average change of 0%; 
and its relative AUROC change ranges from −3 to 5%, with an average change of 1%. 
(ii) TARA-TS (node2vec) does always improve over TARA though. Its relative accuracy 
change over TARA ranges from 6 to 27%, with an average change of 14%; and its rela-
tive AUROC change ranges from 9 to 32% with an average change of 16%. (iii) As for 
TARA-TS (metapath2vec), we also see improvement over TARA, though not as large as 
for TARA-TS (node2vec). In particular, the relative accuracy change of TARA-TS (meta-
path2vec) over TARA ranges from −1 to 14% with an average change of 6%; and its rela-
tive AUROC change ranges from 2 to 15%, with an average change of 7%.

Overall, we find that in terms of classification performance, TARA-TS (node2vec) 
performs the best, followed by TARA-TS (metapath2vec), and followed by TARA-TS 
(graphlets) and TARA that are tied; all four perform significantly better than at random 
(Additional file 1: Figs. S2–S3).

Protein functional prediction. Here, we evaluate the protein functional prediction 
accuracy of alignments of the three TARA-TS versions and TARA. Per discussion in 
Additional file  1: Section S2.1, for each of TARA-TS and TARA, different y percent 

Fig. 3  Comparison of the three TARA-TS versions and TARA. Comparison of the three TARA-TS versions and 
TARA for GO term rarity threshold 25 and ground truth dataset atleast1-EXP, in terms of: a classification 
accuracy, b protein functional prediction accuracy, ) overlap between aligned yeast-human protein pairs, and 
d overlap between predicted protein-GO term associations. In panel (b), the alignment for e.g., TARA contains 
1,716 aligned protein pairs and predicts 3474 protein-GO term associations. In panels (c)–(d), the pairwise 
overlaps are measured via the Jaccard index. Panel (a) encompasses all y percent training tests. Panels (b)–(d) 
are for the 90% training test. Comparisons of different metapath choices for metapath2vec can be found 
in Additional file 1: Fig. S1. Results for the other ground-truth rarity datasets and percent training tests are 
shown in Additional file 1: Figs. S2–S8
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training tests have only marginal differences in classification accuracy. For this reason, 
henceforth, for simplicity, we only consider the 10, 50, and 90 percent training tests; 10 
and 90 allow us to test the extremes and 50 allows us to test the middle. Recall that clas-
sification cannot be performed on two (small) ground truth-rarity datasets, atleast3-EXP 
at thresholds 50 and 25, so no alignments exist for them, and thus protein functional 
prediction is not possible. So, for each TARA-TS version and TARA, we have 21 evalu-
ation tests, resulting from combinations of the seven viable ground truth-rarity datasets 
and the three selected y values.

First, we analyze each TARA-TS version. The following three trends are expected in 
terms of each version’s performance. (i) Precision will likely increase and recall will likely 
decrease as the amount of training data goes from 10 to 50 to 90. We expect precision to 
increase because a classifier trained on a larger dataset will potentially be more accurate. 
Consequently, the testing dataset will be smaller. So, the alignment produced by a given 
method version will contain fewer node pairs. This in turn is expected to yield fewer pre-
dictions and thus to decrease recall. (ii) Precision will likely increase and recall will likely 
decrease as the requirement for functional relatedness becomes more stringent, i.e., as 
the value of k in the atleastk-EXP ground truth datasets goes up. Namely, increase in 
precision is expected because at a larger k value, training is done on more reliable data. 
Decrease in recall is expected because at a larger k value, there will be less data overall, 
and hence less testing data. So, a similar argument as in point (i) above applies. (iii) Pre-
cision will likely increase and recall will likely decrease as the GO term rarity threshold 
decreases, i.e., as rarer GO terms are considered. This is based on the observation that 
rarer GO terms may be more meaningful [5, 27], leading to smaller but higher quality 
data. As such, higher precision and lower recall are expected for similar reasoning as in 
points (i) and (ii) above. We find that all three expected trends hold for all TARA-TS ver-
sions (Additional file 1: Figs. S4–S6).

Second, we compare the performance of the three TARA-TS versions and TARA. 
Interestingly, even though TARA-TS (node2vec) has superior classification performance 
(Fig.  3(a)), all four methods yield almost equal protein functional prediction accuracy 
(Fig. 3(b) and Additional file 1: Figs. S4–S6). Further unexpected is that TARA-TS has 
similar accuracy to TARA, despite the former using sequence information that TARA 
does not. We take a closer look at the alignments and predictions made by each method 
to see if the different methods are aligning the same nodes, or predicting the same 
protein-GO term associations. So, we investigate how much their alignments overlap 
(Fig. 3(c)), and how much their predictions overlap (Fig. 3(d)). We find that the different 
methods are all aligning and predicting at least somewhat different information from 
each other. Yet, their predictions are equally accurate. Furthermore, we find that TARA 
is more similar to (i.e., overlaps the most with) TARA-TS (graphlets) than to TARA-TS 
(node2vec) and TARA-TS (metapath2vec), which makes sense since the former uses 
graphlets to extract feature vectors like TARA, and the latter two do not. Moreover, 
TARA-TS (node2vec) and (metapath2vec) are more similar to each other than to the 
other methods, which is also expected since they both use a similar random walk-based 
feature extraction method.

It is surprising that TARA-TS (graphlets) does not improve upon TARA, i.e., that the 
additional sequence information does not improve upon only topological information. 
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It is also surprising that TARA-TS (metapath2vec) does not improve upon TARA-TS 
(node2vec) – both use a similar random walk-based embedding process, but metapath-
2vec additionally accounts for the heterogeneous information in the integrated network. 
We discuss potential reasons for these two unexpected findings in section “Discussion”.

Because TARA-TS (node2vec) not only yields the best classification performance, 
predicting functional (un)relatedness the best out of all TARA-TS versions, but also 
captures the most novel protein functional information compared to TARA (i.e., the 
predictions it makes overlap the least to those made by TARA out of all TARA-TS ver-
sions), we continue only with TARA-TS (node2vec) as the selected TARA-TS version.

TARA‑TS versus TARA in the task of protein functional prediction: toward TARA++
Focusing on TARA-TS (node2vec) as the selected TARA-TS version (i.e., simply as 
TARA-TS), we zoom into the comparison between it and TARA. The two methods have 
different alignments and make different predictions (Fig. 4), so how can they still have 
similar protein functional prediction accuracy? To answer this, we look at the preci-
sion and recall of predictions made by both methods, only those predictions made by 
TARA-TS but not TARA, and only those predictions made by TARA but not TARA-
TS (Fig. 4(b) and Additional file 1: Fig. S10). From this, we highlight two findings. First, 
graphlets, which use only topological information, perform as well as network embed-
ding features that use both topological and sequence information. This is supported by 
the fact that predictions made only by TARA and only by TARA-TS produce similar 
accuracy in almost all evaluation tests. Second, predictions made by both methods are 
significantly more accurate than predictions made by any one method alone. We discuss 
these findings further in section “Discussion”.

Because the overlap of predictions of TARA-TS and TARA has such high accuracy, 
we take it as our new TARA++ method, which we consider further. For simplicity, for 

Fig. 4  Comparison of TARA-TS and TARA in terms of their alignment and prediction overlaps. Comparison of 
the selected TARA-TS version and TARA for GO term rarity threshold 50, ground truth dataset atleast1-EXP, and 
the 90% training test, in terms of overlap between their: a aligned yeast-human protein pairs and b predicted 
protein-GO term associations. In panel (b), precision and recall are shown for each of the three prediction sets 
captured by the Venn diagram; TARA++’s predictions are those in the overlap. The overlaps are for one of 
the 10 balanced datasets; so, the alignment size and prediction number of a method may differ from those in 
Fig. 3b, where the statistics are averaged over all balanced datasets. Results for the other ground truth-rarity 
datasets are shown in Additional file 1: Figs. S9–S10
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each of the seven viable ground truth-rarity datasets, we consider either TARA++10, 
TARA++50, or TARA++90 as a representative percent training test. That is, we pick 
seven “TARA++ versus existing methods” evaluation tests from the 21 total. We choose 
the percent training tests that represent TARA++’s best results. Namely, we look for 
the percent training test with high precision (predictions are accurate) as well as a large 
number of predictions (maximize the biological knowledge uncovered). So, we choose 
TARA++90 for all ground truth-rarity datasets except atleast2-EXP at the 50 and 
25 rarity thresholds, where we choose TARA++10. Henceforth, we refer to all of the 
selected TARA++ versions simply as TARA++.

TARA++ versus existing NA methods in the task of protein functional prediction

Accuracy. We compare TARA++’s predictions against those of two most fairly com-
parable state-of-the-art methods, TARA and PrimAlign. Also, we consider predictions 
resulting from using only sequence information, Sequence. Here, we treat the 55,594 
anchor links by themselves as the alignment; as no topological information is used, this 
is not an NA method. With TARA and Sequence, we can separately analyze each aspect, 
i.e., within-network topological information only and across-network sequence informa-
tion only, and evaluate how each compares to our integrative TARA++. (TARA++’s 
predictions are by definition a subset of TARA’s predictions, and so we expect TARA++ 
to have higher precision but lower recall than TARA.) With PrimAlign, we can evalu-
ate how this integrative but unsupervised method compares to our also integrative but 
supervised TARA++. Importantly, TARA and PrimAlign were already shown to out-
perform many previous NA methods (section “Methods – Description of existing NA 
methods”). So, comparing to these two methods is sufficient. Also, keep in mind that like 
with TARA, a theoretical recall of 1 is not necessarily possible with TARA++. This is 
because for a given training/testing split, TARA++ uses a part (up to 90%) of the ground 
truth functional data for training, and so for that split, it is impossible to make predic-
tions for the training data portion, i.e., to transfer functional knowledge from node u to 
node v when the node pair (u, v) is in the training data.

Both precision and recall are important. However, in the biomedical domain, if one 
has to choose between the two measures, we believe that precision is favored. As an 
illustration, let us compare the following two scenarios: (i) making 30 predictions of 
which 27 are correct, i.e., having a small number of mostly correct predictions, and (ii) 
making 300 predictions of which 100 are correct, i.e., a large number of mostly incorrect 
predictions. The former, having higher precision but lower recall than the latter, is more 
viable for potential wet lab validation.

Our key results are as follows (Fig. 5 and Additional file 1: Fig. S11). In terms of preci-
sion, TARA++ is the best for 6 out of 7 ground truth-rarity datasets. It is only slightly 
inferior to PrimAlign for 1 out of 7 datasets (atleast1-EXP for ALL GO terms), but 
TARA++ has much higher recall than PrimAlign on this dataset. Speaking of recall, 
TARA is expected to always outperform TARA++, and this is what we observe. Of the 
remaining existing methods, TARA++ is the best for 2 out of 7 datasets—atleast1-EXP 
at the ALL and 50 rarity thresholds–even though TARA++ makes much fewer predic-
tions than the next best method, Sequence. For the other datasets, TARA++’s recall is 
lower than that of PrimAlign and Sequence. This is expected, since TARA++ makes 
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fewer predictions than the other methods. Importantly, the difference in recall between 
TARA++ and every other method is relatively small, for example only 0.06 lower on 
average compared to TARA, while TARA++ is much better in terms of precision than 
every other method, for example 0.2 greater on average compared to TARA. As dis-
cussed above, such a trade-off between precision and recall is worth it for our task.

We see that the precision of TARA++ is much greater than just the sum of TARA’s 
and Sequence’s precisions, suggesting that integrating within-network topological and 
across-network sequence information has compounded effects. This further highlights 
the need for such approaches.

In the above analyses, we account for the default number of predictions made by each 
method for the given ground truth-rarity dataset. These numbers do not necessarily 
match between the different methods. Consequently, TARA++ may have high preci-
sion simply because it makes the fewest number of predictions. Nonetheless, when we 
enforce that each method produces the same number of predictions, we again find that 
TARA++ is the best of all considered NA methods in a majority of all evaluation tests, 
in terms of both precision and recall (Fig. 6, Additional file 1: Section S2.2, and Addi-
tional file 1: Fig. S12).

Combining TARA and TARA-TS into TARA++ results in such high accuracy. So, we 
also investigate the overlap between TARA++ and PrimAlign (Fig.  7 and Additional 
file 1: Fig. S13). The number of overlapping predictions is small, suggesting complemen-
tarity between TARA++ and PrimAlign. However, TARA++ still has an advantage 
when it comes to predicting protein function, as the predictions made only by TARA++ 
have higher precision for 6 out of 7 ground truth-rarity datasets compared to those 
made only by PrimAlign. Importantly, the overlap between predictions of TARA++ and 
PrimAlign has much higher precision than either alone. This is not totally unexpected 
for reasons discussed in section “Discussion”.

Running time. We analyze the time needed for TARA-TS, TARA, and PrimAlign to 
compute an alignment when considering the ALL GO term rarity threshold; this thresh-
old is the worst case (slowest) out of all studied thresholds since it has the most data. 
As TARA++ comes from the intersection of TARA-TS’s and TARA’s results, its time is 

Fig. 5  Comparison of TARA++ and three existing methods in the task of protein functional prediction. 
Comparison of TARA++ and three existing methods in the task of protein functional prediction, for rarity 
thresholds a 50 and b, c 25, and for ground truth datasets a, b atleast1-EXP and c atleast2-EXP. The alignment 
size (the number of aligned yeast-protein pairs) and number of functional predictions (predicted protein-GO 
term associations) are shown for each method, except that TARA++ does not have an alignment per se. i.e., 
TARA++ comes from the overlap of predictions made by TARA and TARA-TS; hence the “N/A”s. For TARA++ 
and TARA, results are averages over all balanced datasets; the standard deviations are small and thus invisible. 
Results for the other ground truth-rarity datasets are shown in Additional file 1: Fig. S11
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either the maximum or sum of TARA-TS’s and TARA’s, if the two are run at the same 
time or one after the other, respectively. We find the following (also, see Additional file 1: 
Table S1).

As expected, we observe that TARA-TS’s running time decreases as k (in atleastk-EXP) 
increases, since there is less data overall, and thus less data to train on. When comparing 
TARA-TS and TARA, the former is faster, and this comes from the feature computa-
tion time, as both use the same supervised framework. TARA-TS’s node2vec computa-
tion is expectedly faster than TARA’s graphlet counting even when using Orca for two 

Fig. 6  Comparison of TARA++ and three existing methods when all make the same number of predictions. 
Representative results (for one ground truth-rarity dataset) comparing TARA++ and three existing methods 
in the same way as in Fig. 5a except that here all methods make the same number of predictions. The 
remaining results (for the other ground truth-rarity datasets) are shown in Additional file 1: Fig. S12

Fig. 7  Comparison of TARA++ and PrimAlign in terms of their prediction overlaps. Representative results 
(for GO term rarity threshold 50 and ground truth dataset atleast1-EXP) comparing TARA++ and PrimAlign 
in the same way as TARA and TARA-TS are compared in Fig. 4b. The remaining results (for the other ground 
truth-rarity datasets) are shown in Additional file 1: Fig. S13
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reasons. First, the random walks produced by node2vec can be thought of as sampling 
the network structure, which is much faster than capturing the full network structure 
like graphlets do.

Second, node2vec is parallelized while Orca is not. Parallelization benefits node2vec a 
lot: the same number of random walks is performed for each node (parameter -r:), so 
no single node takes much longer than any other. However, for graphlet counting, nodes 
with e.g., high degrees are the limiting time factor, and so parallelization would not help 
as much. Also note that TARA-TS’s (and PrimAlign’s) running time is missing the step of 
computing sequence-based anchor links; these anchors were precomputed and provided 
by the PrimAlign study. So, TARA-TS (and PrimAlign) has an unfair advantage over 
TARA. Despite this missing step, regardless of how TARA-TS and TARA are combined 
to form TARA++, PrimAlign will still be faster. However, it is about half as precise as 
TARA++. Even though TARA++ is slower, it is still practically feasible. Thus, the extra 
time is worth the almost doubling of precision.

TARA++’s robustness to data noise. Lastly, we investigate TARA++’s robustness to 
noise (i.e., random perturbation) in the data, since one cannot expect all real-world data 
(even the PPI networks we use!) to be perfect. When we incrementally introduce noise 
in the data, ranging from 0% (original data) to 100% (completely random), we find that 
TARA++ is fairly robust up to 50% noise (Fig.  8 and Additional file  1: Section S2.3). 
Beyond 50%, precision and recall drop and eventually reach 0, as expected.

Discussion
Recall the two unexpected findings from section “Results – Comparison of TARA-TS 
versions”. Namely, first, it is surprising that TARA-TS (graphlets) does not improve upon 
TARA, i.e., that the additional sequence information does not improve upon only top-
ological information. A reason may be that the across-network sequence information 
complements, rather than enhances, the within-network topology information. Some 
of the predictions made by TARA-TS (graphlets), specifically those that overlap with 
TARA’s, may be due to the within-network topology information used by both methods, 
and the remaining predictions made by TARA-TS (graphlets) may be due to the across-
network sequence information, which is not used by TARA. Second, it is surprising that 

Fig. 8  Robustness of TARA++ to data noise. Robustness of TARA++’s protein functional prediction accuracy 
as data noise increases from 0 to 100%, for GO term rarity threshold 25 and ground truth dataset atleast2-EXP
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TARA-TS (metapath2vec) does not improve upon TARA-TS (node2vec). Both use a 
similar random walk-based embedding process, but metapath2vec additionally accounts 
for the heterogeneous information in the integrated network. The lack of improve-
ment may be because the additional information captured by the considered metapaths 
is not useful in this task, or because constraining random walks by node type leads to 
less neighborhood structure being explored. For example, at some point in a random 
walk, a human node may have many human neighbors, but the walk is forced to move 
to a yeast node due to the metapath constraints. Then, the neighborhood of that human 
node will not be well explored. However, because the number of possible metapaths to 
test in order to find the best one(s) is exponential with respect to the length of the path, 
it is not feasible to test every possibility, even for short lengths. Thus, an efficient way of 
selecting appropriate metapaths for a given network would be necessary to continue to 
pursue metapath-based embedding methods for this task. However, to our knowledge 
no such selection process exists, which is why we do not pursue this problem beyond the 
metapaths we have considered.

Also recall the two interesting findings from section “Results – TARA-TS versus 
TARA in the task of protein functional prediction: toward TARA++”. Namely, first, 
graphlets, which use only topological information, perform as well as network embed-
ding features that use both topological and sequence information. This motivates the 
need to develop better graphlet-based methods for integrated networks as future work. 
Second, predictions made by both TARA and TARA-TS are significantly more accurate 
than predictions made by any method alone. In a sense, their overlap is integrating state-
of-the-art research across the computational biology and social network domains, by 
combining TARA’s graphlet-based topology-only features with TARA-TS’s embedding-
based topology-and-sequence features. So, the overlapping predictions combine the 
strengths of both domains, showing promise for future domain-crossing endeavors.

Finally, recall from section “Results – TARA++ versus existing NA methods in the 
task of protein functional prediction” that the overlap between predictions of TARA++ 
and PrimAlign has much higher precision than either alone. This is not totally unex-
pected, as it suggests that predictions made by multiple methods (as already seen when 
combining TARA and TARA-TS into TARA++) are the most reliable; adding PrimAlign 
further strengthens this observation. Also, this echoes the promise of ensemble meth-
ods in machine learning. As such, further exploration of integrating different approaches 
beyond the simple overlapping of their predictions may be fruitful.

Conclusions
TARA and TARA-TS are among the first biological NA methods that use supervised learn-
ing, despite the introduction of supervised social NA methods in recent years. This could be 
because the study of biological NA began well before the current era of “big data” [41, 42], 
making unsupervised approaches the traditional option. However, as the amount of biolog-
ical network data continues to increase, developing data-driven approaches is an important 
direction. Especially fruitful for the task of NA is integrating research knowledge across 
biological and social network domains, as we have shown by combining TARA and TARA-
TS into TARA++. Namely, TARA++ outperforms state-of-the-art NA methods in the 
task of protein functional prediction, an ultimate goal of NA. Though, it is still important 
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to note that data-driven approaches are limited when data is scarce. As such, more sophis-
ticated “ensembling” procedures for integrating protein functional prediction approaches 
together, beyond the simple overlapping of their predictions as we explored with TARA and 
TARA-TS (into TARA++), and PrimAlign, could potentially mitigate these limitations and 
open up new research directions.

As TARA++ is the first data-driven NA method to integrate topological and sequence 
information, it is just a proof-of-concept. This work can be taken further. We found that 
graphlet-based features on the isolated networks (on topological information alone) per-
form as well as embedding-based features on the integrated network (on topological and 
sequence information combined), even though the latter (using more data) was expected to 
be better. Thus, developing a graphlet feature that would efficiently deal with an integrated 
network could yield further improvements. This might include novel algorithms for speed-
ing up counting of heterogeneous graphlets in large data. Heterogeneous graphlets, or het-
erogeneous network embedding features other than metapath2vec, could better distinguish 
between different node/edge types in an integrated network and thus only improve over 
the features considered in this study. Also, we focused on NA of static networks. However, 
research in NA of dynamic (e.g., aging- or disease progression-related) networks is becom-
ing popular [43, 44]. So, our framework can be adapted to such novel NA categories.
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