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Abstract 

Background: One component of precision medicine is to construct prediction mod-
els with their predicitve ability as high as possible, e.g. to enable individual risk predic-
tion. In genetic epidemiology, complex diseases like coronary artery disease, rheuma-
toid arthritis, and type 2 diabetes, have a polygenic basis and a common assumption 
is that biological and genetic features affect the outcome under consideration via 
interactions. In the case of omics data, the use of standard approaches such as general-
ized linear models may be suboptimal and machine learning methods are appealing to 
make individual predictions. However, most of these algorithms focus mostly on main 
or marginal effects of the single features in a dataset. On the other hand, the detection 
of interacting features is an active area of research in the realm of genetic epidemiol-
ogy. One big class of algorithms to detect interacting features is based on the multifac-
tor dimensionality reduction (MDR). Here, we further develop the model-based MDR 
(MB-MDR), a powerful extension of the original MDR algorithm, to enable interaction 
empowered individual prediction.

Results: Using a comprehensive simulation study we show that our new algorithm 
(median AUC: 0.66) can use information hidden in interactions and outperforms two 
other state-of-the-art algorithms, namely the Random Forest (median AUC: 0.54) and 
Elastic Net (median AUC: 0.50), if interactions are present in a scenario of two pairs of 
two features having small effects. The performance of these algorithms is comparable 
if no interactions are present. Further, we show that our new algorithm is applicable to 
real data by comparing the performance of the three algorithms on a dataset of rheu-
matoid arthritis cases and healthy controls. As our new algorithm is not only applicable 
to biological/genetic data but to all datasets with discrete features, it may have practi-
cal implications in other research fields where interactions between features have to be 
considered as well, and we made our method available as an R package (https ://githu 
b.com/imbs-hl/MBMDR Class ifieR ).

Conclusions: The explicit use of interactions between features can improve the 
prediction performance and thus should be included in further attempts to move 
precision medicine forward.
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Background
The concept of precision medicine is meant to improve many aspects of health and 
healthcare. It promises a new level of disease treatment and prevention for complex dis-
eases like coronary artery disease, rheumatoid arthritis, and type 2 diabetes, by taking 
into account individual variability in genes, environment, and lifestyle. In the long-term, 
healthcare professionals and researchers will be able to predict more accurately which 
treatment and prevention strategies for a particular disease will work in which groups 
of patients. To achieve this level, precision medicine can be viewed as a continuous pro-
cess of data preprocessing/data mining (track 1), construction of diagnostic/prognostic 
models (track 2) and prediction of treatment response/disease progression (track 3) [1]. 
Whereas track 1 focuses on the identification of important observed and latent varia-
bles, tracks 2 and 3 require models with highly accurate predictions about disease sta-
tus, prognosis or progression of a disease of a single individual [2–6]. Explained with 
(generalized) linear models as an example, based on the estimation of and inference on 
regression coefficients, tracks 2 and 3 aim at constructing models with their predictive 
ability as high as possible, measured in terms of some performance, e.g. the area under 
the receiver operating characteristic curve (AUC). In genetic epidemiology, simple Men-
delian diseases, such as cystic fibrosis and hereditary breast and ovarian cancer, allow for 
relatively straightforward predictions. However, more complex diseases like those men-
tioned above, involve complex molecular mechanisms and thus have a polygenic basis 
[7]. It is a common assumption that these biological/genetic features, such as proteins 
and the underlying genetic variations, also are acting via interactions either with each 
other [8–11] or with environmental features [12]. To make it even more complicated, 
features may affect the outcome under consideration only via interactions. Thus, the 
interacting features do not have an effect on their own. An example of such a constella-
tion is the effect of a variant in the MDR1 gene together with exposure to pesticides on 
Parkinson’s disease [13].

The use of standard approaches such as generalized linear models is suboptimal in 
these cases because of the algorithm instabilities when modeling many variables and 
their interactions or requirements of large sample sizes [14]. Thus, regularized general-
ized linear models [15, 16] or machine learning methods, e.g. Random Forest [17], are 
appealing to make individual predictions based on many variables. They differ in the 
details, but most of them share one important property: they focus mostly on main or 
marginal effects of the single features in a dataset. For example, in Random Forest, at 
each node, the single best feature and its best split point are selected [18]. This may lead 
to ignoring features without any or only small main effects, although Wright et al. [19] 
have shown that using enough single trees can compensate for this issue. Likewise, regu-
larized regression models are usually specified using main effect terms only, and interac-
tion terms have to be included explicitly as new features [20]. These common limitations 
may limit the prediction performance of models based on currently used algorithms 
if features have an effect on the outcome only via interactions. Further, these algo-
rithms are at opposite corners in terms of performance and interpretability. Whereas 
the prediction performance of Random Forests is generally at the highest levels, their 
interpretability is somewhat limited, especially, if there are thousands of trees in a sin-
gle forest. The very opposite is true for regularized regression models. Their prediction 
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performance may be limited by the fact that the models are made up of simple additive 
effects of the underlying features, however, they thus offer good interpretability in gen-
eral, which might be of great interest in precision medicine.

On the other hand, there has been much research on the detection of interacting fea-
tures in the realm of genetic epidemiology [21]. One big class of algorithms to detect 
interacting features are the multifactor dimensionality reduction (MDR)-based algo-
rithms based on the original idea by Ritchie et al. [22]. The basic idea of all MDR-based 
algorithms is to reduce the dimensionality of simultaneously analyzed features by pool-
ing combinations of feature levels (cells) in high risk ( H ) and low risk ( L ) groups, result-
ing in a single best combination (MDR model) of d features. The original MDR algorithm 
has several drawbacks and limitations, thus a large number of modifications and exten-
sions were proposed in recent years. A comprehensive review of the original MDR 
algorithm and its modifications and extensions is given by Gola et  al.  [23]. However, 
these algorithms aim at identifying interacting features but do not allow for individual 
predictions.

In this work we show how to extend the model-based MDR (MB-MDR), a powerful 
MDR-based algorithm to detect interacting features first described by Calle et al. [24], to 
enable interaction empowered individual prediction while maintaining interpretability 
of the prediction models. We do this, inspired by the methodology of the Random For-
est algorithm, by considering each combination of features as a classification model in 
itself and by aggregating an optimal number of these models. The optimal number is 
found by internal cross-validation. Here, we focus on presenting our new algorithm and 
its comparison with the performance of Random Forest and Elastic Net in a comprehen-
sive simulation study. For illustrational purposes, we also apply all three algorithms to a 
dataset by the North American Rheumatoid Arthritis Consortium (NARAC).

Results
Simulation study

A simulation study was performed to compare our proposed algorithm with two state-
of-the-art prediction algorithms, the Random Forest [17] and the Elastic Net [31], a 
generalization of the LASSO [16] and ridge regression [15], for classification tasks. 
As implementations we utilized the R (version 3.3.1) [32] packages ranger (version 
0.8.1.300) [33] and glmnet (version 2.0-5) [20]. We considered eight scenarios to investi-
gate the performance of the three algorithms given different underlying effect structures. 
The scenarios start with very simple effect structures and gradually become more com-
plex. In each scenario different simulation parameter combinations were considered. For 
each scenario and combination of simulation parameters 50 datasets D were created as 
replicates. In each replication we independently simulated q = 100 SNPs in total, and 
of those different numbers of SNPs or combinations of SNPs are used as effect feature 
components.

Benchmark

For the benchmarking regarding the AUC of the three algorithms, we used the mlr 
framework (version 2.12) [35]. Each dataset D was split into datasets D1 and D2 of 
the same size. Tuning was performed with fivefold cross-validation on D1 using the R 
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package mlrMBO (version 1.1.0) [36] for 100 iterations with ranger (ntrees: 500, mtry: 
square root of the number of tuning hyperparameters) as the surrogate learner. After 
tuning, a prediction model with the tuned parameters was built on D1 and the prediction 
performance was calculated on D2 for each replicate.

Scenarios 1 and 2: only main effects

In scenarios 1 (one effect SNP) and 2 (five effect SNPs) with only main effects simulated, 
all algorithms achieve similar performances. All algorithms show the greatest variability 
of performance across the 50 simulated data sets as indicated by the height of the box 
and the dots in Figs. 1 and 2 for the lowest sample sizes of 200, i.e. 100 for tuning and 
training and 100 for performance estimation. With increasing sample size, the median 
performance increases and the variability of performance decreases for all algorithms. 
The heritability has the greatest impact on prediction performance. For example, the 
AUC increases from about 0.62 to 0.68 to 0.75 for heritabilities 0.05, 0.1 and 0.2 in sce-
nario 1 and 10,000 samples. Comparing these two scenarios shows that the performance 
is dependent on the number of SNP combinations, i.e. in these scenarios the number of 
SNPs with main effect. This is expected, as the total heritability increases with the num-
ber of SNPs.

Scenario 3: one pair of two interacting SNPs

Simulating only one interaction effect as in scenario 3, MBMDRC models have the 
highest median prediction performance for all sample sizes as shown in Fig. 3. In this 
scenario, the ranger and glmnet models do not achieve a median performance greater 
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Fig. 1 Performance in simulation scenario 1. Performance of the algorithms MBMDRC, RANGER, and GLMNET 
measured as AUC over 50 replicates in sample sizes 200, 1000, 2000, and 10,000 in scenario 1: one SNP with 
main effect (MAF 0.1, 0.2, or 0.4 and heritability 0.05, 0.1, 0.2), 99 SNPs without any effect
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Fig. 2 Performance in simulation scenario 2. Performance of the algorithms MBMDRC, RANGER, and GLMNET 
measured as AUC over 50 replicates in sample sizes 200, 1000, 2000, and 10,000 in scenario 2: five SNPs with 
main effects (MAF 0.1, 0.2, or 0.4 and heritability 0.05, 0.1, 0.2), 95 SNPs without any effect
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Fig. 3 Performance in simulation scenario 3. Performance of the algorithms MBMDRC, RANGER, and GLMNET 
measured as AUC over 50 replicates in sample sizes 200, 1000, 2000, and 10,000 in scenario 3: one pair of 
interacting SNPs without marginal effects (MAF 0.1, 0.2, or 0.4 and heritability 0.05, 0.1, 0.2), 98 SNPs without 
any effect
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than 0.55, if the interacting SNPs have the same MAF. Interestingly, models can improve 
their median performance at the cost of increased variability, if the SNPs have different 
MAFs. This effect is most evident for ranger models, but also observable for the other 
two algorithms.

Scenario 7: three pairs of interacting SNPs and three SNPs with main effects

For scenarios with both main and interaction effects, MBMDRC models dominate the 
other two algorithms for sample sizes greater than 200 (see Fig. 4 for scenario 7). How-
ever, ranger models can reach similar or even better performances if the interacting 
SNPs have different MAFs. For example, for MAFs 0.1 and 0.4, heritability greater or 
equal 0.1 and sample size greater than 1000, ranger models achieve a better performance 
than the MBMDRC models on the median, although the variability is slightly increased. 
The glmnet models do not use the interaction information, thus their performance is 
just based on the available main effects and the maximum median performances remain 
at about the same level between 0.68 and 0.80 as in scenario 1.

Scenario 8: one interaction of three SNPs and three SNPs with main effects

In scenario 8, the interaction of three SNPs was simulated, which is an interaction of 
higher order than considered by the MB-MDR. Still, MBMDRC models achieve at least 
a similar performance as the glmnet and ranger models (see Fig.  5). Even though the 
MBMDRC models should be based mostly on the three additional single SNPs with 
marginal effects, the median performance for sample size 2000 is slightly better than 
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Fig. 4 Performance in simulation scenario 7. Performance of the algorithms MBMDRC, RANGER, and GLMNET 
measured as AUC over 50 replicates in sample sizes 200, 1000, 2000, and 10,000 in scenario 7: three pairs of 
interacting SNPs without marginal effects and three SNPs with marginal effects only (MAF 0.1, 0.2, or 0.4 and 
heritability 0.05, 0.1, 0.2), 91 SNPs without any effect
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those of ranger and glmnet. For sample size 10,000, ranger can achieve similar median 
performance but with higher variability. The glmnet models are limited by the informa-
tion based on the three main effects and their performance is comparable to those of 
scenario 7.

Other scenarios

The further scenarios 4, 5, and 6 confirm the relationships described so far and the cor-
responding Additional files 1–3: Figures 1–3 as well as detailed result tables also for the 
already described scenarios  (see Additional files 4–11: Tables 1–8) can be found as addi-
tional files. ROC curves for sample size 100,000 in each scenario are shown in Additional 
files 13–20: Figures 4–11.

Real data

Application of the three algorithms to the rheumatoid arthritis dataset yields no relevant 
differences regarding their median performance. Here, the glmnet models have a median 
AUC of 0.86, the ranger models of 0.85 and the MBMDRC models of 0.83, comparable 
to the simulation results of scenario 2, i.e. multiple SNPs with main effects but no inter-
actions, MAF = 0.4, h2 = 0.1 , and sample size between 1000 and 2000. The correspond-
ing box plot is shown in Fig. 6.

In contrast to both other algorithms, the MBMDRC models allow insight into the 
underlying effect structure of the features. In Fig.  7, the three MDR models with the 
highest test statistics taken from a random MBMDRC model are shown. On the left side 
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Fig. 5 Performance in simulation scenario 8. Performance of the algorithms MBMDRC, RANGER, and 
GLMNET measured as AUC over 50 replicates in sample sizes 200, 1000, 2000, and 10,000 in scenario 8: three 
interacting SNPs without marginal effects and three SNPs with marginal effects only (MAF 0.1, 0.2, or 0.4 and 
heritability 0.05, 0.1, 0.2), 94 SNPs without any effect
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Fig. 6 Performance in the NARAC dataset. Performance of the algorithms MBMDRC, RANGER, and GLMNET 
measured as AUC in tenfold cross validation in the NARAC dataset of 868 cases and 1194 controls with 18,263 
SNPs from the HLA region on chromosome 6

Fig. 7 First 3 MDR models of an MBMDRC model. The average trait, i.e. for the NARAC dataset the fraction 
of cases, and the respective cell classifications are shown. The data is  taken from one randomly selected 
MBMDRC model of the benchmark on the NARAC dataset of 868 cases and 1194 controls with 18,263 SNPs 
from the HLA region on chromosome 6. On the left side the average trait in each cell, i.e. for the NARAC 
dataset the fraction of cases, and on the right side, the respective classifications are displayed. In this case, the 
average traits could be interpreted as estimates of the respective genotype penetrances
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the average trait in each cell, i.e.  for the NARAC dataset the fraction of cases, and on 
the right side, the respective classifications are displayed. In this case, the average traits 
could be interpreted as estimates of the respective genotype penetrances. For example, 
the HLO matrix of the MDR model of the features rs498422 and rs532098 can be inter-
preted as follows:

1. Samples must have at least one minor allele at both SNPs to have a higher disease 
risk.

2. Having two minor alleles at one SNP but two major alleles at the other SNP results in 
no significant risk increase or decrease.

3. All other genotype combinations decrease disease risk.

Comparison of the runtimes shows that the ranger implementation is the fastest of all 
three. Specifically, the mean runtime on Intel® Xeon® E5-2680 CPUs at 2.70 GHz of one 
outer cross validation fold is 1.5 times faster for ranger (378,582.6 s) than for MBMDRC 
(603,436.6 s), and 1.3 times faster for glmnet (465,262.4 s) than for MBMDRC.

Discussion
In this work, we extended a known algorithm to detect interactions to a classification 
algorithm that has a performance comparable to two popular classifications algorithms 
if no interactions are present, but which clearly outperforms these if interactions are 
present. We have shown this by a comprehensive simulation study and by application 
to real data. Specifically, our simulation study revealed that our new classification algo-
rithm can use information hidden in interactions more efficiently than the Random For-
est approach, i.e. smaller sample sizes are required to achieve similar performance. The 
Elastic Net, at least in available implementations, does not consider interactions at all, 
this is inappropriate if the outcome is influenced by interacting features. In our applica-
tion to the real dataset on RA, the performance of our algorithm was not relevantly dif-
ferent from that of the competitors, indicating that even though Liu et al. [39] claimed 
to have identified putative interactions on chromosome 6 and MDR models of two SNPs 
entered the MBMDRC models, this did not improve the classification performance. 
Comparing the relative performance in the real data, this result is most similar to sce-
nario 2, i.e. five SNPs with main effects only but no interactions. However, this does not 
automatically mean that there are no interactions in this specific region, but first of all 
only that consideration of possible interactions does not improve the prediction of the 
disease status. That is not a contradiction, because one does not necessarily mean the 
other.

One drawback of our new method is the exponential increase in runtime with an 
increasing number of features in a dataset. Whereas its runtime is not much slower than 
that of the Elastic Net approach, because both depend mostly on the number of features, 
Random Forest is clearly the fastest one, mainly dependent on the number of samples. 
This makes the application of our new method to datasets on a genome-wide scale still 
challenging at the moment and leaves room for improvement.

As a clear strength, we have shown in our unbiased benchmark on simulated data that 
taking interactions into account can improve classification performance. As our method 
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is not only applicable to biological/genetic data but to all datasets with discrete features, 
it may have practical implications in other applications, and we made our method avail-
able as an R package [30].

In addition, our observation that the Random Forest algorithm can make use of inter-
acting features up to a certain degree fits well with Wright et al. [19], who conclude that 
Random Forest is able to capture interactions but not to detect them. In this regard, our 
method offers a clear advantage in that is not only able to capture interactions but the 
MDR models as the basic building block also allow insight into the underlying structure 
and dependencies among the features. Thus, our proposed algorithm can be seen as a 
good tradeoff between powerful prediction and interpretability of the models. In this 
sense our algorithm can be a valuable addition to the repertoire of methods currently 
used in the process of precision medicine. Providing more insight into the underlying 
effect structure when constructing prediction models as done with our new algorithm 
can in turn lead to new insights into the driving structures of the diseases analyzed.

Conclusions
We conclude that the explicit use of interactions between features can improve the pre-
diction performance and thus should be included in further attempts to move precision 
medicine forward. In addition, our algorithm offers a way to understand which feature 
effects influence prediction.

Methods
Throughout this work we assume that nD samples in a dataset D are characterized by 
q independent variables X ∈ X nD× = X

nD
1

× · · · × X
nD
q  . The independent variables are 

of categorical type, thus Xj = N
+ , e.g. genotypes of single nucleotide polymorphisms 

(SNP). Additionally, the dependent variable Y ∈ YnD denotes the true outcome of each 
sample in D . Depending on Y , the task is to estimate Ŷ  given X , thus either.

1. The class outcome Ŷ = k , i.e. classification to class k out of K  classes ( Y ∈ N),
2. The class probabilities Ŷ = P̂(Y = k | X) , i.e. probability estimation for each class k 

out of K  classes ( Y ∈ N),
3. Or to estimate a continuous outcome Ŷ  , i.e. regression of X on Y  ( Y ∈ R).

To estimate an individual outcome ŷ we use models MD
A;h , based on algorithm A with 

hyperparameter settings h and trained on D , given a realization x of the independent 
variables: ŷ = MD

A;h(x).

Model‑based multifactor dimensionality reduction (MB‑MDR)

The MB-MDR algorithm was first described by Calle et al. [24]. For a detailed review of 
the MDR algorithm and its extensions including the MB-MDR algorithm together with 
detailed descriptions of the algorithms we refer to Gola et al. [23]. Here, we give only a 
brief overview of the MB-MDR algorithm to lay out the basics of our new algorithm to 
enable individual trait prediction. For a graphical illustration of the MB-MDR core algo-
rithm we refer to Additional file 21:  Figure 12, adapted from Gola et al. [23].
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The MB-MDR is an extension of the MDR such that the assignment of the cell labels, 
i.e. the combinations of feature levels, is based on an appropriate statistical test and that 
each possible combination of features, i.e. MDR model, is ranked by a test statistic. Sup-
pose each sample i , i = 1, . . . , n is characterized by q discrete features xi =

(

x1, . . . , xq
)

 , 
with each feature xj , j = 1, . . . , q having lj levels. We specifically assume that all possible 
feature levels are known, e.g., the three possible genotypes of a single SNP. The observed 
outcome of each sample is denoted by yi and can be of an arbitrary scale. The core algo-
rithm of the MB-MDR consists of five steps:

1. Select d ≤ q features xjk with ljk levels, where k = 1, . . . , d ( jk ∈ {1, . . . , q}).
2. Arrange the samples based on the selected features in the d-dimensional space by 

grouping samples with the same level combinations of the d features into cells cm , 
m = 1, . . . ,

∏d
k ljk.

3. Perform appropriate hypothesis tests with corresponding test statistics Tm and p val-
ues pm , comparing the samples in each cell cm with all other samples not in cm.

4. Assign a label to each cell cm to construct the MDR model defined by the selected 
features based on the respective hypothesis test:

5. If less than nmin samples are in cm or pm ≥ α , cm has an ambiguous risk and is labeled 
as O.

6. If at least nmin samples are in cm and pm < α , the value of Tm determines the label of 
cm as high risk ( H ) or low risk ( L).

7. Derive a test statistic for the current MDR model by selecting the maximum test sta-
tistic of two appropriate hypothesis tests:

8. Test samples in high risk cells against all other samples.
9. Test samples in low risk cells against all other samples.

This core algorithm is repeated for all r = 1, . . . ,
( q
d

)

 possible combinations of d out 
of q features and possibly for several values of d , constructing MDR models fd,r . Finally, 
the MDR models can be sorted by their respective test statistic and using a permutation-
based strategy, p values can be assigned to each MDR model. Several improvements and 
extensions of this basic algorithm allow to analyze different outcomes, such as dichoto-
mous [25], continuous [26] and survival [27] traits, or to adjust for covariates and lower 
order effects of the features of an MDR model [28]. A fast C +  + implementation of the 
MB-MDR is available [29] and used in this work.

Extension of MB‑MDR to individual prediction

We extended the MB-MDR algorithm to not only detect interactions between fea-
tures but to allow individual predictions based on the MDR models. It is important 
to note that each MDR model is a prediction model in itself using d features and that 
each cell of an MDR model includes the predicted outcome for the respective feature 
levels combination. Thus, after the construction of the MDR models and selection 
of the s best MDR models, the prediction for a new sample is the aggregation of the 
characteristics of the cells the sample falls into. As for all MDR-based algorithms, 
this requires that a new sample cannot contain factor levels that were not considered 
in model building; in the case of SNPs as independent variables, all factor levels are 
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known and considered in advance. In our framework, instead of calculating p values 
of the MDR models, s is determined by cross-validation during training. Here, s is 
chosen, such that a loss, e.g. the mean squared error, is minimized or a performance 
measure, e.g. the AUC, is maximized.

Suppose a new sample i∗ with features xi∗ . Then, i∗ is a member of one specific cell 
cm in each of the best s MDR models fd,r , r = 1, . . . , s . Different types of predictions 
are possible using different cell values and aggregations.

1. Predicting a binary outcome, i.e., the classification task.

(a) Hard classification Count the number of MDR models in which i∗ is a member 
of cells labelled as H and cells labelled as L . Then, the estimated class of i∗ is the 
most frequent cell label among the s best MDR models.

(b) Probability estimation. The natural estimate for the probability of being mem-
ber of a specific class for a new sample i∗ , given the membership in a certain 
cell cm of a MDR model fd,r , is the proportion of the specific class in that cell, 
regardless of whether if it is labelled as either H or L . The simple average across 
the s MDR models with the highest test statistics results in an aggregated esti-
mate of the probability of being a case. Here, O labelled cells may be treated in 
either of two ways:

1. O labelled cells are considered as missing values and thus are not considered in the 
aggregated estimate.

2. O labelled cells are included as the global estimate of the class probabilities in the 
training dataset.

2. Predicting a continuous outcome, i.e., the regression task. The same principle as in 
probability estimation applies to prediction in regression tasks for a continuous out-
come. Here, the predicted outcome is given by the average of the mean outcome of 
training samples in the respective cells of the s highest ranked MDR models. Again, 
O labelled cells may be treated in either of two ways:

3. O labelled cells are considered as missing values and thus are not considered in the 
aggregated estimate.

4. O labelled cells are included as the global estimate of the mean outcome in the train-
ing dataset. Hard classification can be done by taking the most frequent cell label H 
or L among the s MDR models.

5. General risk prediction. Additionally, a score can be constructed by counting H cells 
as +1 , L cells as −1 and O cells as 0. The higher the score of i∗ , the higher the risk of 
the specific outcome.

The MB-MDR classification algorithm (MBMDRC) described so far has been 
implemented for classification tasks as function MBMDRC in the R package MBM-
DRClassifieR available on GitHub [30].
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Simulation study

A simulation study was performed to compare our proposed algorithm with two state-
of-the-art prediction algorithms, the Random Forest [17] and the Elastic Net [31], a 
generalization of the LASSO [16] and ridge regression [15], for classification tasks. 
As implementations we utilized the R (version 3.3.1) [32] packages ranger (version 
0.8.1.300) [33] and glmnet (version 2.0-5) [20]. We considered eight scenarios to inves-
tigate the performance of the three algorithms given different underlying effect struc-
tures. The scenarios start with very simple effect structures and gradually become more 
complex. As an example, the data generation procedure is illustrated additionally for 
scenario 4 in Additional file 22. In each scenario different simulation parameter combi-
nations were considered. For each scenario and combination of simulation parameters 
50 datasets D were created as replicates. In each replication we independently simulated 
q = 100 SNPs in total, and of those, different numbers of SNPs or combinations of SNPs 
are used as effect feature components:

1. One single SNP
2. Five single SNPs without interaction
3. One interaction of two SNPs
4. One interaction of two SNPs and three single SNPs without interactions
5. Two interactions of two SNPs each
6. Three interactions of two SNPs each
7. Three interactions of two SNPS each and three single SNPs without interactions
8. One interaction of three SNPs and three single SNPs without interactions

The effect strength of each component was defined by the heritability 
h2 ∈ {0.05, 0.1, 0.2} . The minor allele frequencies (MAF) of the effect SNPs was set to 
0.1, 0.2 or 0.4. The MAF of the additional SNPs were randomly selected from (0.05, 0.5) . 
All genotypes were simulated under the assumption of Hardy–Weinberg equilibrium. 
To translate the given heritability and MAF into penetrances, we generated penetrance 
tables of interacting SNPs, i.e. the probability of having a phenotype given a certain com-
bination of genotypes, by the GAMETES software (version 2.1) [34] without any mar-
ginal effects of the interacting SNPs. It was not possible to generate penetrance tables for 
h2 = 0.2 in scenario 8 with GAMETES, thus this setting is left out in the following. The 
penetrance tables of single effect SNPs were created under the restriction of rendering β 
coefficients in a logistic regression model with an additive coding of the SNPs. Detailed 
information on the statistical background and the connection between regression model 
coefficients and penetrance tables can be found as additional file (see Additional file 13). 
In scenarios with multiple SNP combinations, the single penetrances were aggregated on 
the logit scale and transformed back to probabilities using the expit transformation. Phe-
notype, e.g. disease status, of a sample was then determined by drawing from a Bernoulli 
distribution with the aggregated penetrance as phenotype probability. We considered 
sample sizes of 200, 1000, 2000 and 10,000 with equal numbers of cases and controls.

For the benchmarking regarding the AUC of the three algorithms, we used the mlr 
framework (version 2.12) [35]. Each dataset D was split into datasets D1 and D2 of 
the same size. Tuning was performed with fivefold cross-validation on D1 using the R 
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package mlrMBO (version 1.1.0) [36] for 100 iterations with ranger (ntrees: 500, mtry: 
square root of the number of tuning hyperparameters) as the surrogate learner. The 
hyperparameter spaces considered for tuning are shown in Table 1 together with their 
respective descriptions. After tuning, a prediction model with the tuned parameters was 
built on D1 and the prediction performance was calculated on D2 for each replicate.

The underlying code is available from the authors upon request.

Application to real data

We also compared the performance of the three algorithms on a dataset by the North 
American Rheumatoid Arthritis Consortium (NARAC) comprised of 1194 cases with 
rheumatoid arthritis and 868 controls, genotyped at 545,080 SNPs, which is described 
in detail by Amos et al. [37]. Previously, Liu et al. [39] identified some putatively inter-
acting loci in the HLA region on chromosome 6 in this dataset. We removed SNPs and 
samples with high missing rates ( > 0.02 and > 0.1 respectively) and selected all SNPs 
with MAF > 0.1 on chromosome 6 after LD pruning (window size: 106 SNPs, step size: 
1 SNP, r2 threshold: 0.75). This resulted in a dataset of 868 cases and 1194 controls 
with 18,263 SNPs. As in the benchmarking on the simulated datasets, we used mlr and 
mlrMBO with the same settings as before in nested cross-validation with tenfold outer 
cross-validation.

The underlying R code is available from the authors upon request.

Supplementary Information
The online version contains supplementary material available at https ://doi.org/10.1186/s1285 9-021-04011 -z.

Additional file 1: Figure 1. Performance in simulation scenario 4. Performance of the algorithms MBMDRC, RANGER, 
and GLMNET measured as AUC over 50 replicates in sample sizes 200, 1000, 2000, and 10,000 in scenario 4: one pair 
of interacting SNPs without marginal effects and three SNPs with main effects (MAF 0.1, 0.2, or 0.4 and heritability 
0.05, 0.1, 0.2), 95 SNPs without any effect.

Additional file 2: Figure 2. Performance in simulation scenario 5. Performance of the algorithms MBMDRC, RANGER, 
and GLMNET measured as AUC over 50 replicates in sample sizes 200, 1000, 2000, and 10,000 in scenario 5: two pairs 
of interacting SNPs without marginal effects (MAF 0.1, 0.2, or 0.4 and heritability 0.05, 0.1, 0.2), 96 SNPs without any 
effect.

Table 1 Hyperparameter spaces used for tuning

Algorithm Hyperparameter Description Values

glmnet alpha Elastic net mixing parameter. alpha = 1 is the LASSO, 
alpha = 0 is the ridge penalty

{0, 0.25, 0.5, 0.75, 1}

ranger num.trees Number of trees 1000

mtry Number of variables to possibly split at in each node [1, 100] ⊂ N

min.node.size Minimal node size [10, 100] ⊂ N

MBMDRC min.cell.size Minimum number of samples with a specific geno-
type combination to be statistically relevant. If less, a 
cell is automatically labelled as O

[0, 50] ⊂ N

alpha Significance level used to determine H , L and O label 
of a cell

(0.01, 1) ⊂ R

adjustment Adjustment for lower order marginal effects {NONE, CODOMINANT}

order Number of SNPs to be considered in MDR models {1, 2}

order.range Use order as upper limit? {TRUE, FALSE}

o.as.na Use O labelled cells as NA or as the global probability/
mean estimate

{TRUE, FALSE}

https://doi.org/10.1186/s12859-021-04011-z
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Additional file 3: Figure 3. Performance in simulation scenario 6. Performance of the algorithms MBMDRC, RANGER, 
and GLMNET measured as AUC over 50 replicates in sample sizes 200, 1000, 2000, and 10,000 in scenario 6: three 
pairs of interacting SNPs without marginal effects (MAF 0.1, 0.2, or 0.4 and heritability 0.05, 0.1, 0.2), 94 SNPs without 
any effect.

Additional file 4:  Table 1. Performance in scenario 1. Performance of the algorithms MBMDRC, RANGER, and GLM-
NET measured as AUC over 50 replicates in scenario 1: one SNP with main effect (MAF 0.1, 0.2, or 0.4 and heritability 
0.05, 0.1, 0.2), 99 SNPs without any effect.. The median of the AUC and the 25% and 75% quantile in parentheses over 
50 replicates are given.

Additional file 5: Table 2. Performance in scenario 2. Performance of the algorithms MBMDRC, RANGER, and GLM-
NET measured as AUC over 50 replicates in scenario 2: five SNPs with main effects (MAF 0.1, 0.2, or 0.4 and heritability 
0.05, 0.1, 0.2), 95 SNPs without any effect.. The median of the AUC and the 25% and 75% quantile in parentheses over 
50 replicates are given.

Additional file 6: Table 3. Performance in scenario 3. Performance of the algorithms MBMDRC, RANGER, and GLM-
NET measured as AUC over 50 replicates in scenario 3: one pair of interacting SNPs without marginal effects (MAF 
0.1, 0.2, or 0.4 and heritability 0.05, 0.1, 0.2), 98 SNPs without any effect. The median of the AUC and the 25% and 75% 
quantile in parentheses over 50 replicates are given.

Additional file 7: Table 4. Performance in scenario 4. Performance of the algorithms MBMDRC, RANGER, and 
GLMNET measured as AUC over 50 replicates in scenario 4: one pair of interacting SNPs without marginal effects 
and three SNPs with main effects (MAF 0.1, 0.2, or 0.4 and heritability 0.05, 0.1, 0.2), 95 SNPs without any effect.. The 
median of the AUC and the 25% and 75% quantile in parentheses over 50 replicates are given.

Additional file 8: Table 5. Performance in scenario 5. Performance of the algorithms MBMDRC, RANGER, and GLM-
NET measured as AUC over 50 replicates in scenario 5: two pairs of interacting SNPs without marginal effects (MAF 
0.1, 0.2, or 0.4 and heritability 0.05, 0.1, 0.2), 96 SNPs without any effect.. The median of the AUC and the 25% and 
75% quantile in parentheses over 50 replicates are given.

Additional file 9: Table 6. Performance in scenario 6. Performance of the algorithms MBMDRC, RANGER, and GLM-
NET measured as AUC over 50 replicates in scenario 6: three pairs of interacting SNPs without marginal effects (MAF 
0.1, 0.2, or 0.4 and heritability 0.05, 0.1, 0.2), 94 SNPs without any effect.. The median of the AUC and the 25% and 
75% quantile in parentheses over 50 replicates are given.

Additional file 10: Table 7. Performance in scenario 7. Performance of the algorithms MBMDRC, RANGER, and GLM-
NET measured as AUC over 50 replicates in scenario 7: three pairs of interacting SNPs without marginal effects and 
three SNPs with marginal effects only (MAF 0.1, 0.2, or 0.4 and heritability 0.05, 0.1, 0.2), 91 SNPs without any effect.. 
The median of the AUC and the 25% and 75% quantile in parentheses over 50 replicates are given.

Additional file 11: Table 8. Performance in scenario 8. Performance of the algorithms MBMDRC, RANGER, and 
GLMNET measured as AUC over 50 replicates in scenario 8: three interacting SNPs without marginal effects and three 
SNPs with marginal effects only (MAF 0.1, 0.2, or 0.4 and heritability 0.05, 0.1, 0.2), 94 SNPs without any effect.. The 
median of the AUC and the 25% and 75% quantile in parentheses over 50 replicates are given.

Additional file 12: Statistical background. Detailed information on the statistical background and the connection 
between regression model coefficients and penetrance tables.

Additional file 13: Figure 4. ROC curves in scenario 1. ROC curves of the algorithms MBMDRC, RANGER, and GLM-
NET for 10,000 samples in scenario 1: one SNP with main effect (MAF 0.1, 0.2, or 0.4 and heritability 0.05, 0.1, 0.2), 99 
SNPs without any effect. Light lines represent the ROC curve of each of the 50 replicates, strong lines are based on 
the mean true positive and true negative rates of the 50 replicates for each of a sequence of 1000 thresholds.

Additional file 14: Figure 5. ROC curves in scenario 2. ROC curves of the algorithms MBMDRC, RANGER, and GLM-
NET for 10,000 samples in scenario 2: five SNPs with main effects (MAF 0.1, 0.2, or 0.4 and heritability 0.05, 0.1, 0.2), 95 
SNPs without any effect. Light lines represent the ROC curve of each of the 50 replicates, strong lines are based on 
the mean true positive and true negative rates of the 50 replicates for each of a sequence of 1000 thresholds.

Additional file 15: Figure 6. ROC curves in scenario 3. ROC curves of the algorithms MBMDRC, RANGER, and GLM-
NET for 10,000 samples in scenario 3: one pair of interacting SNPs without marginal effects (MAF 0.1, 0.2, or 0.4 and 
heritability 0.05, 0.1, 0.2), 98 SNPs without any effect. Light lines represent the ROC curve of each of the 50 replicates, 
strong lines are based on the mean true positive and true negative rates of the 50 replicates for each of a sequence 
of 1000 thresholds.

Additional file 16: Figure 7. ROC curves in scenario 4. Description: ROC curves of the algorithms MBMDRC, 
RANGER, and GLMNET for 10,000 samples in scenario 4: three pairs of interacting SNPs without marginal effects and 
three SNPs with marginal effects only (MAF 0.1, 0.2, or 0.4 and heritability 0.05, 0.1, 0.2), 91 SNPs without any effect. 
Light lines represent the ROC curve of each of the 50 replicates, strong lines are based on the mean true positive and 
true negative rates of the 50 replicates for each of a sequence of 1000 thresholds.

Additional file 17: Figure 8. ROC curves in scenario 5. ROC curves of the algorithms MBMDRC, RANGER, and GLM-
NET for 10,000 samples in scenario 5: two pairs of interacting SNPs without marginal effects (MAF 0.1, 0.2, or 0.4 and 
heritability 0.05, 0.1, 0.2), 96 SNPs without any effect. Light lines represent the ROC curve of each of the 50 replicates, 
strong lines are based on the mean true positive and true negative rates of the 50 replicates for each of a sequence 
of 1000 thresholds.
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Additional file 18: Figure 9. ROC curves in scenario 6. ROC curves of the algorithms MBMDRC, RANGER, and GLM-
NET for 10,000 samples in scenario 6: three pairs of interacting SNPs without marginal effects (MAF 0.1, 0.2, or 0.4 and 
heritability 0.05, 0.1, 0.2), 94 SNPs without any effect. Light lines represent the ROC curve of each of the 50 replicates, 
strong lines are based on the mean true positive and true negative rates of the 50 replicates for each of a sequence 
of 1000 thresholds.

Additional file 19: Figure 10. ROC curves in scenario 7. ROC curves of the algorithms MBMDRC, RANGER, and 
GLMNET for 10,000 samples in scenario 7: three pairs of interacting SNPs without marginal effects and three SNPs 
with marginal effects only (MAF 0.1, 0.2, or 0.4 and heritability 0.05, 0.1, 0.2), 91 SNPs without any effect. Light lines 
represent the ROC curve of each of the 50 replicates, strong lines are based on the mean true positive and true nega-
tive rates of the 50 replicates for each of a sequence of 1000 thresholds.

Additional file 20: Figure 11. ROC curves in scenario 8. ROC curves of the algorithms MBMDRC, RANGER, and GLM-
NET for 10,000 samples in scenario 8: three interacting SNPs without marginal effects and three SNPs with marginal 
effects only (MAF 0.1, 0.2, or 0.4 and heritability 0.05, 0.1, 0.2), 94 SNPs without any effect. Light lines represent the 
ROC curve of each of the 50 replicates, strong lines are based on the mean true positive and true negative rates of 
the 50 replicates for each of a sequence of 1000 thresholds.

Additional file 21: Figure 12. Illustration of MB-MDR core algorithm. Step (1): d = 2 features are selected. Step (2): 
All samples, in this example cases and controls, in the dataset are arranged based on the selected features in the  
d-dimensional space by grouping samples with the same level combinations of the d features into cells c1, . . . , c9 . 
Step (3): Calculation of χ2-test statistics in each of the cells by comparing the cases and controls in the cell with all 
other samples not in the cell. Step (4): Assign an O label to a cell if the respective χ2-test statistic from the previous 
step is less than χ2

1 (1− α) , otherwise a high risk ( H , more cases than controls in the cell) or low risk ( L , less cases 
than controls in the cell) label. Step (5): Derive a test statistic for the current MDR model by selecting the maximum 
test statistic of two χ2-tests: 1. comparing samples in high risk cells against all other samples, 2. Comparing samples 
in low risk cells against all other samples. Figure adapted from Gola et al. [23].

Additional file 22: Illustration of data generation procedure. In scenario 4 one interaction of two SNPs and three sin-
gle SNPs build up the underlying effect structure. In each replicate SNP data of an unlimited population is generated 
according to the MAF specifications, here 0.2 for L1 and L2, 0.1 for L3, 0.2 for L4, and 0.4 for L5. Penetrance tables are 
generated according to the scenario MAF and heritability specifications, i.e. h2 = 0.2. At each locus the penetrances 
according to the genotypes are added on the logit scale and transformed back to the probability scale using the 
expit function to create the total probability pTotal. The phenotype (case or control) is sampled from a Bernoulli distri-
bution with success probability pTotal. From the population a random sample of cases and controls is drawn from the 
replication dataset D.

Abbreviations
AUC : Area under the receiver operating characteristic curve; MAF: Minor allele frequency; MB-MDR: Model-based multi-
factor dimensionality reduction; MBMDRC: Model-based multifactor dimensionality reduction classification algorithm; 
MDR: Multifactor dimensionality reduction; NARAC : North American Rheumatoid Arthritis Consortium; SNP: Single 
nucleotide polymorphism.
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