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Abstract: Emerging evidence has shown the oncogenic roles of leptin in modulating cancer progres-
sion in addition to its original roles. Analyses of transcriptomic data and patients’ clinical information
have revealed leptin’s prognostic significance in renal cell carcinoma (RCC). However, its biological
effects on RCC progression have not yet been explored. Clinical and transcriptomic data of a RCC
cohort of 603 patients were retrieved from The Cancer Genome Atlas (TCGA) and analyzed to reveal
the correlation of leptin with clinical outcomes and the hierarchical clustering of gene signatures
based on leptin levels. In addition, cox univariate and multivariate regression analyses, cell migration
upon leptin treatment, identification of putative leptin-regulated canonical pathways via ingenuity
pathway analysis (IPA), and the investigation of induction of Wnt5a, ROR2, and Jun N-terminal
Kinases (JNK) phosphorylation activation were performed. We first observed a correlation of high
leptin levels and poor outcomes in RCC patients. Knowledge-based analysis by IPA indicated the
induction of cancer cell migration by leptin, which was manifested via direct leptin treatment in the
RCC cell lines. In RCC patients with high leptin levels, the planar cell polarity (PCP)/JNK signaling
pathway was shown to be activated, and genes in the axis, including CTHRC1, FZD2, FZD10, ROR2,
WNT2, WNT4, WNT10B, WNT5A, WNT5B, and WNT7B, were upregulated. All of these genes were
associated with unfavorable clinical outcomes. WNT5A and ROR2 are pivotal upstream regulators of
PCP/JNK signaling, and their correlations with leptin expression levels were displayed by a Pearson
correlation analysis. The inhibition of signal transduction by SP600125 reversed leptin-mediated cell
migration properties in RCC cell lines. The results indicate the prognostic impact of leptin on RCC
patients and uncover its ability to promote cell migration via PCP/JNK signaling.
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1. Introduction

Emerging evidence has demonstrated leptin’s roles in regulating cancer progression,
including tumor proliferation, metastasis, angiogenesis, and drug resistance [1]. Leptin is
the product of the Ob (LEP) gene, which was cloned in 1994 by Friedman and colleagues. It
was noted that the gene was also called leptin after the Greek “leptos”, meaning thin [2].
Leptin was previously characterized as a peptide hormone secreted by adipocytes, and
it functions as the ligand of leptin receptor (LEPR), which regulates energy expenditure
and hunger [3,4]. Recent findings have shown leptin and leptin receptor expression be-
yond traditional tissues, thereby suggesting the signaling pathway’s pivotal role outside
of its physiological modulation. Several tissues express leptin, including the placenta,
stomach, fibroblasts, mammary epithelium, and skeletal muscle [5–8]. Furthermore, data
from public databases indicate leptin RNA expression in a broad range of cancer types,
including kidney cancer. Renal cell carcinoma (RCC) is a malignancy derived from re-
nal tubular epithelial cells and is a common malignant tumor in the urinary system; its
incidence rate is second to the bladder cancer [9]. Approximately 85% of RCC patients
are diagnosed as subtype of RCC, clear cell RCC (ccRCC) [9]. ccRCC is insensitive to
traditional radiotherapy or chemotherapy, and the most common therapeutic strategy is
nephrectomy [10]. However, approximately 20 to 30% of patients have distant metastases
at the time of diagnosis, and around 30% of patients in the aforementioned cohort progress
to local recurrence or distant metastasis after nephrectomy for localized disease [11,12].
Critical molecular alterations in ccRCC include the von Hippel–Lindau (VHL) gene muta-
tion, VHL promoter hypermethylation, and chromosome 3p deletion which support the
distinct pathogenesis [13]. However, leptin’s effects on regulating tumor progression as
well as its prognostic significance in ccRCC have not yet been addressed. In this study, the
clinical role of leptin in RCC focused on its prognostic value in predicting survival rate. In
addition, the potential biological function was pre-analyzed by knowledge-based software
according to the transcriptomic data in cancer patients. The leptin-mediated impacts on
ccRCC progression were investigated as well as addressing the molecular mechanism.
We aimed to shed light on the critical role of leptin in ccRCC and provide evidence for
developing a therapeutic strategy for those patients displaying high leptin levels.

2. Results
2.1. Leptin Is an Independent Predictor of a High Hazard Ratio for ccRCC, and the Hierarchical
Clustering of Transcriptomic Data Is Shown Based on High and Low Leptin Groups in the
ccRCC Cohort

We first explored leptin’s clinical significance in ccRCC. Clinical information and
transcriptomic data of a ccRCC cohort of 603 patients were retrieved from The Cancer
Genome Atlas (TCGA) and investigated [14]. Patients were stratified into high and low
groups based on the relative LEP expression levels (Figure 1A and Supplementary Table S1).
High leptin expression was associated with poor overall survival (p = 0.013, Figure 1B).
Furthermore, the results of the univariate Cox regression analysis indicated that high leptin
expression levels were correlated with poor outcomes. Leptin further appeared to serve
as an independent predictor for high hazard ratios compared with the patient’s tumor
(T), node (N), and metastasis (M) (TNM) status and clinical stage (p = 0.006, multivariate,
Table 1). These data indicate the prognostic application of leptin for ccRCC patients.
An analysis of hierarchical clustering in high/low leptin groups displayed a roughly
distinguished pattern, suggesting the merit of investigating transcriptomic changes to
justify the aforementioned clinical observations (Figure 1C).
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Figure 1. Correlation of leptin with clinical outcomes and hierarchical clustering of gene signatures based on leptin levels. 
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determined by RNA-Seq platform (Illumina HiSeq). (A) Relative leptin and transcriptomic read counts (total counts) of 
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leptin group and 207 cases in low-leptin group. Size of dot indicates the relative case number of patients. (B) Kaplan–

Meier analysis of leptin expression under the condition of overall survival probability in ccRCC patients. (C) Hierarchical 

clustering of genes in the high and low leptin groups. Z-scores were computed on a gene-by-gene basis by subtracting the 

mean and then dividing by the standard deviation. 

  

Figure 1. Correlation of leptin with clinical outcomes and hierarchical clustering of gene signatures based on leptin levels.
The gene expression profile in the dataset of kidney renal clear cell carcinoma (KIRC) (dataset ID: Table 2. PANCAN) was
determined by RNA-Seq platform (Illumina HiSeq). (A) Relative leptin and transcriptomic read counts (total counts) of
clear cell renal cell carcinoma (ccRCC) patients in the leptin high/low groups; 603 cases were stratified to 396 cases in
high-leptin group and 207 cases in low-leptin group. Size of dot indicates the relative case number of patients. (B) Kaplan–
Meier analysis of leptin expression under the condition of overall survival probability in ccRCC patients. (C) Hierarchical
clustering of genes in the high and low leptin groups. Z-scores were computed on a gene-by-gene basis by subtracting the
mean and then dividing by the standard deviation.
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Table 1. Cox univariate and multivariate regression analyses of the TNM prognostic factors, patho-
logical stage, and leptin level for overall survival in 603 patients with renal cell carcinoma.

Univariate Multivariate

Variable Comparison HR (95% CI) p-Value HR (95% CI) p-Value

Sex M:F 0.939 (0.704–1.253) 0.670 0.924 (0.607–1.404) 0.924
Stage 3-4:1-2 3.817 (2.784–5.233) <0.001 1.733 (0.685–4.385) 0.246

T T3-4:T1-2 3.138 (2.320–4.245) <0.001 1.370 (0.604–3.110) 0.451
N N1:N0 3.380 (1.795–6.367) <0.001 1.677 (0.860–3.268) 0.129
M M1:M0 4.486 (3.372–5.967) <0.001 2.458 (1.482–4.079) <0.001

Leptin High:low 1.479 (1.084–2.018) 0.013 2.044 (1.224–3.416) 0.006
Cox proportional hazards regression analysis was applied to evaluate the independent prognostic contribution of
leptin after accounting for other critical covariates. F, female; M, male; HR, hazard ratio; CI, confidence interval.

Table 2. Top 10 diseases and functions ranked by the consistency score.

ID Consistency
Score Regulators Diseases and Functions

1 3.615 IL1A Invasion of tumor cell lines

2 3.5 IL17A Invasion of cells

3 3.491 PI3K (complex) Migration of cells

4 3.464 EGFR Size of body

5 3.464 cyclic AMP Activation of cells

6 3.411 PI3K (complex) Cell movement

7 3.357 Cigarette smoke Cell proliferation of tumor cell lines

8 3.333 CCL11 Migration of cells

9 3.317 Alpha catenin Invasion of tumor cell lines

10 3.317 IL22 Activation of cells

2.2. Knowledge-Based Transcriptomic Analysis Reveals Leptin’s Potential Effect in Promoting
Cancer Metastasis

To further explore the potential phenotypes that might be regulated upon leptin
upregulation leading to poor clinical outcomes in cancer patients, those RNA-Seq data
from the ccRCC cohort from the TCGA were investigated (Supplementary Table S2). A total
of 938 gene targets were identified as significant differential expression in the high leptin
group when compared with the low leptin group, and were selected for further study via
the Regulator Effects module in the knowledge-based ingenuity pathway analysis (IPA)
platform. The potential regulation of leptin toward cancer cell migration and invasion
was identified and listed (top three diseases and functions, Table 2). The one with the
top consistency score is shown, and it is also noted that leptin might promote tumor cell
invasion (Figure 2).
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Figure 2. Transcriptomic alteration-based identification of potential diseases and functions modulated upon leptin upreg-
ulation. A total of 20,530 gene expression data from each ccRCC patient were retrieved from The Cancer Genome Atlas
TCGA. The differential gene signatures were obtained after comparing each gene in the high leptin group to each gene in
the low leptin group. Gene targets were further filtered by the log2-transformed 1.5-fold change and p value (<0.05) for
ingenuity pathway analysis (IPA) (938 gene targets). The putative regulatory network of the top diseases and functions is
presented. E: e notation indicated “× 10n” of a value m × 10n.

2.3. Leptin Promotes ccRCC Migration

Cancer cell migration ability was then examined by transwell assays. ccRCC cell lines
were treated with leptin at concentrations of 500 or 1000 ng/mL prior to performing the
assay. The treatments with dosages lower than 500 ng/mL revealed the nonsignificant
effects in RCC cell lines. Caki-1, ACHN, and A498 cells exhibited a significant increase
in cell migration upon leptin addition, though the effect was not observed in 786-O cells
(p < 0.05–0.01, Figure 3). These data further indicate leptin’s regulatory effect in inducing
ccRCC migration, which might contribute to cancer progression, especially in patients with
leptin overexpression.

2.4. The Planar Cell Polarity (PCP) Signaling Pathway Is Predictively Activated by Leptin

We next aimed to study the molecular mechanism in leptin-dependent ccRCC mi-
gration. High-throughput screening-based gene signature alterations in the high leptin
group were examined via IPA. Critical canonical pathways were characterized based on
the level of gene target overlap as well as the corresponding expression pattern with the
IPA database. Among those predicted signaling pathways, the PCP signaling axis was the
top pathway judged by significant p value and activation status (activation z-score = 3.162,
Figure 4A). PCP signaling is one of the noncanonical Wnt signaling pathways of whose
aberrant activation could lead to tumor migratory properties [15–18]. The distribution
of up- and downregulated gene targets is shown in Figure 4B. Ten gene targets of the
PCP pathway, namely, CTHRC1, FZD2, FZD10, ROR2, WNT2, WNT4, WNT10B, WNT5A,
WNT5B, and WNT7B, were further identified in the high leptin group (Figure 4C). Impor-
tantly, WNT5A and ROR2 act upstream of the PCP signaling pathway [19,20]. A significant
correlation of both WNT5A and ROR2 (p < 0.001, Figure 4D) as well as another eight genes
(p < 0.001, Figure S2) with LEP were observed in the ccRCC cohort, indicating the potential
regulatory function of leptin in activating the PCP axis.
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Figure 3. Investigation of ccRCC cell migration upon leptin treatment. Leptin (500 and 1000 ng/mL) was added to the
ccRCC cell lines Caki-1 (A), ACHN (B), A498 (C), and 786-O (D) for 24 h. Cancer cell migration ability was then evaluated
by transwell assays. The experiments were performed three times and a representative result is shown. The p values at the
following levels were considered significant: * p < 0.05, ** p < 0.01.
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Figure 4. List of putative leptin-regulated canonical pathways via IPA. (A) The differentially expressed gene targets in the
high leptin group were studied in the IPA platform. Pivotal canonical pathways judged by the levels of gene expression
and numbers of target overlapping with the IPA database are shown along with the activation status judged by the z-score.
(B) The distribution of up- and downregulated gene targets in each canonical pathway, (C) gene targets characterized with
the significant expressional alterations in the PCP signaling pathway, and (D) Pearson correlations of WNT5A and ROR2
with LEP in the TCGA ccRCC cohort.
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2.5. Gene Targets in the PCP Pathway Reveal Their Prognostic Significance in ccRCC

Ten gene targets in the PCP pathway were further studied to examine their clinical
significance in ccRCC (TCGA). The expression profiles and clinical follow-up data were in-
vestigated and retrieved in the Human Protein Atlas/The Pathology Atlas database [21–24].
Importantly, CTHRC1, FZD2, FZD10, ROR2, WNT2, WNT4, WNT10B, WNT5A, WNT5B,
and WNT7B all showed an association with poor overall survival and were upregulated in
the high leptin group (Figure 5). These results first highlight the pivotal prognostic role of
the PCP pathway in ccRCC patients and the value of further dissecting the corresponding
molecular mechanisms of cancer progression.
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Figure 5. Prognostic significance of PCP pathway gene targets in the ccRCC cohort. The prog-
nostic significance in predicting overall survival was shown after stratifying RNA levels of the
indicated genes in the ccRCC cohort (TCGA). The clinical and transcriptomic data of ccRCC patients
were obtained from The Pathology Atlas database (https://www.proteinatlas.org/; accessed on
15 January 2021).

2.6. Leptin Triggers Cancer Cell Migration via the PCP/JNK Signaling Pathway

The noncanonical WNT/PCP pathway is known to play a pivotal role in promoting
cell movement associated with JNK phosphorylation activation [20,25,26]. An immunoblot
was performed on ACHN cells to test for the level of JNK and JNK phosphorylation. The

https://www.proteinatlas.org/
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results showed the upregulation Wnt5a and a slight alternation of ROR2 in ACHN cells
after leptin treatment (upper panel, Figure 6A). In addition, ROR2, WNT5A, WNT5B,
WNT4, FZD10, and FZD2 expression were also observed to be upregulated by 12 h of leptin
treatment (Figure S3), suggesting the positive regulatory role of leptin in activating the
PCP signaling pathway. Simultaneously, a significant phosphorylation activation of JNK
upon leptin addition at an early stage was detected (lower panel, Figure 6A). Therefore,
the consequence of JNK inhibition was then studied. The block of the signal transduction
via the JNK inhibitor SP600125 appeared to reverse the leptin-mediated increase of JNK
activation and cell migration in ACHN cells (Figure 6B,C). Similar phenotype was observed
in A498 and Cak-1 cells (Figure S1). These data suggest the pivotal role of leptin/PCP/JNK
signaling activation in ccRCC progression.
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were treated with 500 ng/mL leptin for 1 and 24 h. The p-JNK at p46 and p54 isoforms and Wnt5a
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and ROR2 levels were detected by Western blot. (B) ACHN cells were pretreated with 50 µM
SP600125 (a JNK inhibitor) for 30 min prior to 1 h of leptin incubation. Relative p-JNK level was
evaluated by Western blot. (C) ACHN cells were pretreated with 50 µM SP600125 (a JNK inhibitor)
for 30 min prior to 24 h of leptin incubation. Cell migration ability was measured by transwell assays.
The experiments were performed three times and a representative result is shown. The p values at
the following levels were considered significant: * p < 0.05.

3. Discussion

The clear cell subtype of RCC displays relatively high level of leptin receptor [1].
786-O had also been pathologically characterized as a clear cell type with stable VHL
mutation [27], which might be similar to other three clear cell subtype cell lines studied in
this manuscript. However, according to the public data released by the Cancer Cell Line
Encyclopedia (CCLE) database [24,25], 786-O cells revealed the lower expression of leptin
receptor (LEPR) than other cell lines which might in part explain the difference upon the
same dose of leptin treatment (Table S3). In addition, the discrepancy observed in 786-O
cells might be simultaneous due to the insensitivity of leptin receptor to leptin stimulus.
However, the detailed molecular mechanism remains to be further explored.

Results from recent publications further focused on secreted leptin regarding to its
role in RCC carcinogenesis and progression. Leptin was higher in the conditioned media
of human adipose explants from kidney cancer tissue, and the incubation with RCC cell
lines appeared to decrease cancer cell adhesion and increase cell migration [26]. However,
several meta-analysis studies demonstrated that serum leptin might not sufficiently reflect
the risk and progression of RCC and serve as a biomarker for early detection [27–29]. It is
noted that leptin is a peptide hormone whose level in serum is closely related to energy
expenditure which may be one of difficulties in addition to the control of leptin stability
during clinical measurement.

Leptin-mediated regulation toward JNK signaling is reported in several types of
cancer. In ovarian cancer, leptin was found to induce matrix metalloproteinase 7 expression
to promote cell invasion by activating ERK and JNK pathways [28]. In addition, leptin was
found to increase cell proliferation in MCF-7 breast cancer cells via aromatase activation
and JNK phosphorylation [29]. Furthermore, leptin promoted colorectal cancer cell growth
through the metallopanstimulin-1 (MPS-1)-dependent activation of the JNK signaling
pathway [30]. In Barrett’s esophageal adenocarcinoma, leptin appeared to increase cell
proliferation and abolish apoptosis via the transactivation of the epidermal growth factor
receptor and JNK activation [31]. To date, JNK activation by leptin has not been addressed
in RCC. In this study, we showed its regulatory effect toward RCC migration.

Increasing clinical studies indicate the correlation of leptin with cancer metastasis [1].
The correlation of the expression of leptin and its receptor with bone metastasis has been
reported in pulmonary adenocarcinoma patients [32]. Cutaneous melanoma patients who
have relatively high serum leptin expression levels are at a significant risk of sentinel lymph
node metastasis [33]. Furthermore, the results of a correlation analysis in an endometrial
cancer cohort demonstrated the positive association of lymph node metastasis with high
leptin and leptin receptor levels [34]. In addition to the phenotype of increased cancer
cell migration observed in this study, leptin has been reported to regulate metastasis in
various types of cancer. Leptin induces cell migration, invasion, and metastasis in an
orthotopic model of pancreatic cancer, and the simultaneous increase in the expression of
leptin receptor and MMP13 also shows a positive association with the TNM stage [35].

The clinical implications and underlying mechanisms linking excess adiposity and
cancer promotion development and metastasis have been identified and reported [36]. In
addition, the activation of noncanonical Wnt signaling through WNT5A in visceral adipose
tissue of obese subjects is related to inflammation which is similar to the consequence
caused upon leptin treatment [37]. Since endogenous control genes in human adipose
tissue were identified and the relevance to obesity and obesity-associated type 2 diabetes
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mellitus was found [38], it would be interesting to know if the patients classified in the
high leptin group were also those with a higher BMI. However, BMI data of patients were
not collected and included in clear cell type of RCC (ccRCC) datasets from TCGA. Hence,
the correlation remains to be further explored.

4. Materials and Methods
4.1. TCGA Dataset

A renal clear cell carcinoma cohort was studied. The clinical information of the cohort
including age at initial diagnosis, gender, pathological TNM status, targeted molecular
therapy, smoking history, and additional pharmaceutical/radiation therapy are integrated
in Table S4. A total of 603 cases were stratified to 396 cases in high leptin group and
207 cases in low leptin group judged by leptin expression level and coordinate overall
survival. Gene expression in a kidney renal clear cell carcinoma (KIRC) dataset of TCGA
(dataset ID: TCGA_KIRC_exp_HiSeqV2_PANCAN) was previously determined by RNA-
Seq analysis (Illumina HiSeq). Data were retrieved for further in-house analysis. RNA read
counts were normalized and log2 transformed.

4.2. Ingenuity Pathway Analysis (IPA)

Ingenuity® Pathway Analysis (QIAGEN, Hilden, Germany; www.qiagen.com/ingenuity;
accessed on 15 October 2020) was performed according to the pipeline which was previous
described [39]. Briefly, differential gene expression signatures of the ccRCC cohort stratified
to high and low leptin groups were uploaded and analyzed by the Ingenuity® Pathway
Analysis platform according to the instructions.

4.3. Cell Culture

All human renal adenocarcinoma cell lines were obtained from the American Type
Culture Collection (Manassas, VA, USA) and were gifts from Dr. Michael Hsiao of the Ge-
nomics Research Center at Academia Sinica in Taiwan. Culture methods and experimental
conditions were according to our previous publication [39].

4.4. Cell Migration Assay

The method followed the precedent research article [39]. In vitro migration was
assessed by transwell assays with membrane pore size of 8 µm (Millipore, Bedford, MA,
USA). A total of 2 × 105 cells in serum-free culture medium were studied in each transwell
experiment. A498, ACHN, and Caki-1 cells were allowed to migrate for 3.5 h, and migration
time for 786-O cells was 0.5 h.

4.5. Western Blot Analysis

The method and experimental conditions were previously described [39]. After block-
ing with 5% nonfat milk, the membrane was incubated with specific primary antibodies
(p-JNK: sc-6254, Santa Cruz, Dallas, TX, USA, 1:1000; β-actin: sc-47778, Santa Cruz, Dallas,
TX, USA, 1:10,000) overnight at 4 ◦C.

4.6. Statistical Analysis

All data are presented as mean ± S.D. The p values at the following levels were
considered significant: * p < 0.05, ** p < 0.01, and *** p < 0.001. For estimates of the
survival rates, clinical follow-up data were calculated by the Kaplan–Meier method, and
were compared using the log-rank test. In addition, student’s t-test was applied for other
statistical analyses.

5. Conclusions

The results indicate the prognostic significance of leptin in predicting the unfavored
overall survival in RCC patients, and uncover its ability to promote cell migration of RCC
cells via the activation of the PCP/JNK signaling pathway.
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