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Abstract: The insulin-like growth factors (IGFs)/insulin resistance (IR) axis is the major metabolic
hormonal pathway mediating the biologic mechanism of several complex human diseases, including
type 2 diabetes (T2DM) and cancers. The genomewide association study (GWAS)-based approach has
neither fully characterized the phenotype variation nor provided a comprehensive understanding
of the regulatory biologic mechanisms. We applied systematic genomics to integrate our previous
GWAS data for IGF-I and IR with multi-omics datasets, e.g., whole-blood expression quantitative
loci, molecular pathways, and gene network, to capture the full range of genetic functionalities
associated with IGF-I/IR and key drivers (KDs) in gene-regulatory networks. We identified both
shared (e.g., T2DM, lipid metabolism, and estimated glomerular filtration signaling) and IR-specific
(e.g., mechanistic target of rapamycin, phosphoinositide 3-kinases, and erb-b2 receptor tyrosine
kinase 4 signaling) molecular biologic processes of IGF-I/IR axis regulation. Next, by using tissue-
specific gene–gene interaction networks, we identified both well-established (e.g., IRS1 and IGF1R)
and novel (e.g., AKT1, HRAS, and JAK1) KDs in the IGF-I/IR-associated subnetworks. Our results,
if validated in additional genomic studies, may provide robust, comprehensive insights into the
mechanisms of IGF-I/IR regulation and highlight potential novel genetic targets as preventive and
therapeutic strategies for the associated diseases, e.g., T2DM and cancers.

Keywords: IGFs/IR axis; multi-omics integration; system biology; molecular pathways; gene net-
work; key drivers

1. Introduction

The insulin-like growth factors (IGFs)/insulin resistance (IR) axis has been considered
one of the major metabolic hormonal pathways that mediate the biologic mechanism of
several complex human diseases, such as type 2 diabetes (T2DM), metabolic syndrome,
cardiovascular disease, and cancers [1–11]. In particular, abnormal IGF-I levels are related
to impaired glucose tolerance (i.e., IR) and to a higher risk of T2DM [12]. The IGFs/IR axis
can also be associated with carcinogenesis by aberrantly regulating multiple downstream
cell-signaling cascades involved in the promitogenic, proinflammatory, and antiapoptotic
signals, thus creating a proneoplastic environment for tumor growth and development in
particular cells [6,13–17].

The systemic development of those metabolic cytokines can be influenced by not
only environmental [5,18,19] but also genetic factors [20–22]. Despite advances in the
understanding of genetic variance in relation to those biomarkers, common genetic variants
from genomewide association studies (GWASs) explain a moderate proportion of the
phenotype variation. For example, GWASs [23] have so far identified more than 83 loci for
one or more glycemic traits, together explaining about 20% of the genetic heritability [24];
this suggests that more than two thirds of heritability is still to be discovered.

Conventional GWASs examine single genetic markers one at a time, leading to a lack
of statistical power due to multiple testing corrections. Thus, even very large GWASs may
not be adequately powered to identify genetic variants with small effect sizes and low allele
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frequencies, suggesting the need for a group-level analysis of genes/single-nucleotide
polymorphisms (SNPs) in their biologic pathways [25,26]. Further, GWASs are not de-
signed to evaluate the tissue-specific gene–gene interactions that can play a critical role in
accounting for the missing heritability. Further, the genetic loci identified by GWASs often
have unclear functionality; thus, the molecular mechanism underlying the effects of genetic
loci on a given phenotype is not well characterized. Various molecular pathway– and gene
network–based strategies using GWAS findings have been developed [27,28] showing that
they are powerful sufficiently to capture the missing heritability of quantitative pheno-
types [29,30]. The biologic pathway–based approach can also detect the functionality of
the genes in enriched molecular signaling cascades. In addition, tissue-specific analyses of
gene regulatory networks can capture the causal regulatory relationships between genes
under different pathophysiological conditions and identify key drivers (KDs) as important
hub genes regulating subnetwork genes in a particular enriched pathway.

In this study, we applied an integrative genomics approach (Figure 1) that combines
our previous GWAS findings for IGF-I and IR [31] with functional genomics data, including
whole-blood expression quantitative loci (eQTLs, for revealing functional regulation of
gene expression); molecular pathways; and data-driven gene networks to provide gene–
gene (G × G) interaction information from the key tissues involved in the IGF-I/IR axis.
Our study, by integrating genetic loci with multi-omics datasets, may unravel the full range
of genetic functionalities and their regulation (from strong to subtle) in the gene networks,
thus providing comprehensive novel insights into the molecular mechanisms of IGF-I/IR
and potential preventive and therapeutic strategies for IGF-I/IR–associated diseases.
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2. Materials and Methods
2.1. GWAS Data for IGF-I and IR Phenotypes

Detailed study rationale, design, genotyping, and summarized genomic statistics
have been described previously [32,33]. Briefly, the Women’s Health Initiative (WHI)
Harmonized and Imputed GWAS was designed to contribute a joint imputation and har-
monization effort for GWASs within the WHI Clinical Trials and Observational Studies.
WHI study participants include postmenopausal women enrolled at more than 40 clinical
centers nationwide from 1 October 1993, through 31 December 1998. Eligible women were
50–79 years old, postmenopausal, expected to reside near the clinical centers for at least
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3 years after enrollment, and able to provide written informed consent. The WHI Har-
monization and Imputation Studies involved datasets from 6 GWASs: MOPMAP[AS264];
GARNET; GECCO-CYTO; GECCO-INIT; HIPFX; and WHIMS. By using those 6 GWASs,
our previous GWAS [31] included 11,794 women who reported their race or ethnicity as
non-Hispanic white; we conducted a GWAS meta-analysis of gene–environmental interac-
tion (G × E) for IGF-I/IR phenotypes. Our study was approved by the institutional review
boards of each participating clinical center of the WHI and by the University of California,
Los Angeles.

2.2. Genotyping and IGF-I/IR Phenotypes

Genomewide genotyping of the WHI Harmonized and Imputed GWASs was per-
formed, followed by normalization of the genotype calls to the reference panel GRCh37
and genotype imputation using 1000 genome reference panels [33]. The minimum cut-
off of allele frequency across GWASs averaged 1.5%. Our previous GWAS analyzed
18,717,781 common autosomal SNPs, combining the GWA results across 6 GWASs, assum-
ing a fixed-effect model by adjusting for age and 10 genetic principal components. The
phenotypes examined included fasting serum levels of bioavailable IGF-I and homeostasis
model assessment for IR (HOMA-IR, estimated as glucose (unit: mg/dL) × insulin (unit:
µIU/mL)/405 [34]).

2.3. Mergeomics

We used Mergeomics [35], a robust computational pipeline, to identify molecular
pathways, gene networks, and key regulators via integration of multi-omics datasets such
as statistical summaries of phenotype associations and molecular networks. Mergeomics
has demonstrated superior performance to that of other gene-set enrichment analytic
methods [35]. In particular, it less likely to be affected by the heterogeneity between
independent datasets from different studies, thus detecting relatively robust biological
signals across data types and studies.

2.3.1. Mapping SNPs to Genes

We used 2 different mapping methods to connect SNPs to the potential target genes
and generated 2 sets (one per mapping method) of SNP–gene maps. First, a standard
chromosomal distance–based approach with global use of 50 kb gene boundaries was
used to generate a distance-based map within 50 kb of the gene region. Next, an eQTL-
based mapping approach was used. Because gene expression levels can be considered
quantitative traits in GWASs, determining the expression SNPs (eSNPs) associated with
the gene expression (i.e., eQTLs) can capture the potential functional relationship between
SNPs and expressed genes. Further, the eSNPs within the eQTLs are tissue specific. We
used the whole-blood eQTLs and selected cis-eSNPs (within 1 Mb of the gene region at a
false discovery rate (FDR) < 0.05) to find mechanistic clues in peripheral blood mononuclear
cells where the gene expression intersected the IGF/IR-eSNPs. Linkage disequilibrium (LD)
structure was corrected by keeping SNPs that have strong associations with phenotypes in
LD (R2 > 0.5).

2.3.2. Marker-Set Enrichment Analysis (MSEA)

We used knowledge-based pathways that include 1827 canonical pathways from
the Reactome, Biocarta, and the Kyoto Encyclopedia of Genes and Genomes (KEGG)
databases [36,37]. To uncover the gene sets involved in the metabolic and signaling
pathways, we used the MSEA in the Mergeomics package, which is one of the well-
established methods. Using the MSEA, we tested each pathway for enrichment of genes
for IGF-I/IR phenotypes on the basis of modified chi-square statistics [35,38] which adapt
the summarized cutoff (not a single GWAS p value) over a range of quantiles for marker
selections. A FDR < 0.05 was considered statistically significant. To capture the core
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gene sets from redundant pathways across the 2 phenotypes, we further conducted the
Meta-MSEA analysis in Mergeomics to perform a meta-analysis.

2.3.3. Tissue-Specific Gene Regulatory Networks and Weighted KD Analysis

The next step in the Mergeomics pipeline was to perform KD analysis to identify
key regulators involved in the statistically significant pathways (i.e., FDR < 0.05) from
predefined gene regulatory networks. For this analysis, we employed (i) Bayesian gene reg-
ulatory networks constructed from genetic and gene expression data of blood and adipose,
liver, and muscle tissues and (ii) protein–protein interaction networks (PPIs) [39,40]. We
performed a weighted KD analysis [35,41,42] to detect KDs whose neighborhood network
presented significant enrichment on the basis of modified chi-square statistics [35,38] at
FDR < 0.05. The top KDs thus showed high network enrichment for the genes in pathways.

3. Results
3.1. Phenotype-Specific and Common Pathways Shared by IGF-I and IR

We first conducted phenotype-specific MSEA for IGF-I and IR and revealed a tissue-
specific regulatory mechanism. Specifically, among the significant pathways (FDR < 0.05)
for the enrichment of gene sets for IGF-I, 59 pathways overlapped between distance-based
(20% of 279 gene sets) and eQTL-based mapping (29% of 197 gene sets) (Figure S1). These
included T2DM, glycosaminoglycan and lipoprotein metabolism, and signaling by esti-
mated glomerular filtration rate (EGFR) as top pathways. For the IR-specific pathways,
100 pathways from the significantly enriched pathways overlapped between distance-
based (26% of 388 gene sets) and eQTL-based mapping (30% of 337 gene sets) (Figure S2).
Some of the top pathways were similar to those from IGF-I-specific pathways, such as
T2DM, corticosteroid mechanism, mechanisms of lipids and lipoproteins, fatty acid, and
triglycerides (TG), and EGFR signaling, whereas IR-unique pathways included mechanistic
target of rapamycin (mTOR) signaling, phosphoinositide 3-kinase (PI3K) subunit p85,
and erb-b2 receptor tyrosine kinase 4 (ERBB4) signaling. Pathways from the two pheno-
types also included transcription function (e.g., genetic/nuclear receptor transcription and
metabolism of RNA, mRNA, and noncoding RNA), which was not surprising given that
the IGFs/IR axis functions as a mitogen.

Next, we performed a Meta-MSEA between IGF-I and IR in distance-based and eQTL-
based mapping to identify shared pathways enriched by gene sets for both phenotypes.
Distance mapping–based Meta-MSEA (Figure S3) showed 8 (3%) pathways shared by IGF-I
and IR, including known IGF/IR axis pathways (e.g., gene control of body mass index and
lipid metabolism) as well as lesser-known pathways, including mucopolysaccharidosis type
III, Notch-1 heterodimerization domain mutation in cancer, and serotonin neurotransmitter
release cycle. For the eQTL mapping–based Meta-MSEA, 77 pathways (4%) were shared
by the two phenotypes (Figure 2 and Table S1). The shared pathways included general
cellular pathways (e.g., oxidative phosphorylation, calcium signaling, and iron uptake
and transport) and, notably, involved glucose metabolism–unique pathways, such as
glycosaminoglycan biosynthesis, glucagon signaling in metabolic regulation, and insulin
receptor recycling.

Further, six pathways were found to be shared by both distance- and eQTL based–
mapping types for IGF-I and IR (Figure S4), all of which overlapped with the pathways
from the Meta-MSEA of eQTL mapping–based IGF-I/IR. Those shared pathways included
cellular-based pathways, such as heparan sulfate/heparin biosynthesis and mitochondrial
protein import, and well-known IGF-I/IR axis pathways, including T2DM, lipoprotein
metabolism, and EGFR signaling (Figure S4) As described, the Meta-MSEA analysis of
eQTL-based mapping pathways for IGF-I and IR, compared with the analysis of the
distance-based mapping pathways, yielded more informative pathways. This suggests that
functional eSNPs associated with gene expression within whole blood better captured the
mechanisms regulating serum IGF-I/IR, thus leading us to focus on the eQTL mapping–
based IGF-I/IR for further analysis.
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3.2. Putative Key Regulatory Genes (i.e., KDs) for the IGF-I/IR–Associated Pathways

By using the 77 shared pathways identified by eQTL mapping–based IGF-I and IR,
we next performed KD analysis to detect within the G × G interaction networks important
hub genes (i.e., KDs) whose neighborhoods are overrepresented with the genes in the
IGF-I/IR pathways. In addition to PPIs, we obtained tissue-specific KDs from blood and
adipose, liver, and muscle tissues because they play a key role in regulating the IGF-I/IR
axis. Among 25 shared subnetworks enriched with KDs from tissues and PPIs (Table S2),
we detected two subnetworks (Table 1) that overlapped with the six pathways shared by
distance- and eQTL mapping–based IGF-I/IR: T2DM and fatty-acid, TG, and ketone-body
metabolism. Interestingly, the KDs of those two subnetworks were identified only from the
PPI network. In particular, the top five KDs of the T2DM subnetwork were IRS1, HRAS,
JAK1, IGF1R, and AKT1 (Table 1). Further, they are interrelated with the neighboring
subnetworks of insulin, mitogen-activated protein kinase (MAPK), and ERBB4 signaling;
renal-cell carcinogenetic mechanism; innate immune and interleukin signaling; and lipid
metabolism (Figure 3A). In addition, the top five KDs of the subnetwork for fatty-acid, TG,
and ketone-body metabolism were MED24, MED15, MED6, MED1, and CDK8 (Table 1).

Table 1. MSEA meta-analysis of IGF-I and IR pathways (eQTL-based mapping to genes) and corresponding tissue-specific
network key drivers (two modules are presented, being shared by IGF-I and IR pathways on the basis of 50-kb distance and
eQTL-mapping).

Module Size of PPI
(n of Genes)

Top 5 Key Drivers

Module Description Adipose Blood Liver Muscle PPI

M19708 Type 2 diabetes
mellitus 17 N/A N/A N/A N/A

IRS1 *, HRAS,
JAK1, IGF1R,

AKT1

rctm0415

Fatty acid,
triacylglycerol,

and ketone body
metabolism

46 N/A N/A N/A N/A

MED24 *,
MED15 *,
MED6 *,

MED1, CDK8

eQTL, expression quantitative trait loci; IGF-I, insulin-growth factor-I; IR, insulin resistance; MSEA, marker-set enrichment analysis;
N/A, not available; PPI, protein to protein interaction network. * Member gene of the particular pathway in PPI-specific gene-regulatory
network analysis.



Biomolecules 2021, 11, 406 6 of 12

Biomolecules 2021, 11, x FOR PEER REVIEW 7 of 13 
 

NCKAP1L, 
IL10RA, IRF5 

RAC2, NCF2, 
IGSF6 

EGFR, estimated glomerular filtration rate; eQTL, expression quantitative trait loci; IR, insulin resistance; MAPK, mitogen-
activated protein kinase; MSEA, marker-set enrichment analysis; N/A, not available; PPI, protein to protein interaction network. 
** Number of genes in adipose-specific network pathways. ¶ Number of genes in blood-specific network pathways. ¥ Number 
of genes in liver-specific network pathways. † Number of genes in muscle-specific network pathways. § Number of genes in 
PPI-based network pathways. * Member gene of the particular pathway in tissue-specific gene-regulatory network analysis. 

 
(A) 

 
(B) 

Figure 3. PPI-specific gene-regulatory networks of top 5 KDs in IGF-I and IR (eQTL mapping). (eQTL, expression
quantitative trait loci; IGF-I, insulin-growth factor-I; IR, insulin resistance; KD, key drivers; PPI, protein to protein interaction
network; T2DM, type 2 diabetes; wKDA, weighted KD analysis). The bigger nodes with red outlines are top KDs in the
enriched pathway obtained from wKDA. The subnetworks of the KDs are indicated by different colors according to their
differences in canonical functions. (A) T2DM (module M19708)–specific KDs and subnetworks (from the meta-analysis of
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Further, HOMA-IR estimation has been used as a good proxy for IR. Therefore, we
additionally focused on the IR phenotype to reveal associated molecular mechanisms by
identifying KDs in the subnetworks enriched by gene sets for the eQTL mapping based–IR.
Of the 95 subnetworks involved (Table S3), six selected subnetworks are shown in Table 2:
adipokine; insulin, MAPK, and EGFR signaling; innate immune system; and fatty acid
metabolism. Particularly, the top five KDs of the insulin-signaling subnetwork were IRS1,
HRAS, RAC1, JAK1, and RPS6KA3 (Table 2), similar to the aforementioned top five KDs
of the T2DM subnetwork. Thus, their interrelated neighborhood subnetworks were also
similar to those connected to T2DM (Figure 3B).

Table 2. Selected IR pathways (eQTL-based mapping to genes) from MSEA and corresponding tissue-specific network
key drivers.

Module Description Module Size
(n of Genes)

Top 5 Key Drivers

Adipose Blood Liver Muscle PPI

M10462
Adipocytokine

signaling
pathway

N/A **, N/A
¶, N/A ¥, N/A

†, 33 §
N/A N/A N/A N/A

GSK3B, FRAP1,
HSP90AA2,

PDPK1, IKBKB

M10792
MAPK

signaling
pathway

N/A **, N/A
¶, N/A ¥, N/A

†, 63 §
N/A N/A N/A N/A

MAPK9 *,
MAPK8 *,

MAP2K1 *,
MAP3K11 *,

MAPK10

M18155
Insulin

signaling
pathway

N/A **, N/A
¶, N/A ¥, N/A

†, 58 §
N/A N/A N/A N/A

IRS1 *, HRAS *,
RAC1, JAK1,

RPS6KA3

M699 Fatty acid
metabolism

30 **, N/A ¶,
30 ¥, 28 †, N/A

§

HADHB *,
ACADVL *,

ECHS1 *,
ETFDH

N/A HADH *,
ACADM * HADHB * N/A

rctm0354 EGFR down-
regulation

N/A **, N/A
¶, N/A ¥, N/A

†, 15 §
N/A N/A N/A N/A

EGF *, UBA52
*, EGFR, UBC,

RPS27A

rctm0591 Innate immune
system

251 **, N/A ¶,
252 ¥, 223 †,

282 §

LAT2 *, PTPN6,
NCKAP1L,

IL10RA, IRF5
N/A

TYROBP *,
NCKAP1L,

RAC2, NCF2,
IGSF6

AK014135,
COTL1

GRB2 *,
MAPKAPK2,
RAP2A, FRK,

C1QC

EGFR, estimated glomerular filtration rate; eQTL, expression quantitative trait loci; IR, insulin resistance; MAPK, mitogen-activated protein
kinase; MSEA, marker-set enrichment analysis; N/A, not available; PPI, protein to protein interaction network. ** Number of genes in
adipose-specific network pathways. ¶ Number of genes in blood-specific network pathways. ¥ Number of genes in liver-specific network
pathways. † Number of genes in muscle-specific network pathways. § Number of genes in PPI-based network pathways. * Member gene
of the particular pathway in tissue-specific gene-regulatory network analysis.

4. Discussion

A growing number of population-based genomic studies [27,43,44] support that the
comprehensive examination of multiple genes in molecular pathways and in G × G
interaction networks, compared to the individual gene-level approach, contributes more to
revealing the underlying mechanisms of quantitative phenotypes and complex diseases.
To detect the biologic mechanism that may not be obvious from the individual top GWAS
hits alone, we integrated our previous GWAS data with eQTLs, knowledge-driven biologic
pathways, and gene-regulatory networks and found diverse sets of genes within the
biologic pathways, associated with individual IGF-I and IR and across these phenotypes.
Further, our tissue-specific gene-network analyses revealed both well-known and novel
KDs in the IGF-I/IR biological processes. Our findings thus offer robust and comprehensive
insights into the molecular regulation of the IGF-I/IR metabolism, which may have been
missed without systematic genomics approaches.

In particular, the shared pathways we identified across the phenotypes in both
distance- and eQTL based–mapping included T2DM, lipoprotein/TG/fatty acid metabolism,
and EGFR signaling. T2DM [1–4] and lipid metabolism [45] are linked well to the IGF-I/IR
axis. In regard to the lipid profile, previous in vivo and in vitro studies [46–49] indicated
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that IGF-I, IGF binding protein 3, insulin receptor, and IGF-I receptor (IGF-IR) correlated
positively with TG, the TG/high-density lipoprotein (HDL) ratio, and fatty acid synthesis,
inducing IR. Further, high levels of TG, high levels of low-density lipoprotein, and low
levels of HDL were found in patients with T2DM [50–52]. One unique pathway involved,
EGFR signaling, has been implicated in glucose homeostasis by regulating beta-cell pro-
liferation in response to increased metabolic demand [53]. Notably, EGFR signaling is
associated with IGF-IR expression and IGF-I secretion in cancer cells [54,55], contributing
to cancer cell growth and poor survival; thus, dual targeting at EGFR and the IGF/IR axis
has been suggested to be a promising therapeutic strategy for overcoming drug-acquired
resistance in several cancer types, such as lung adenocarcinoma, head and neck squamous
cell and colorectal carcinomas, and glioblastoma [55–58].

Next, because hundreds of genes are involved in the identified biologic pathways,
we used the G × G interaction networks and identified key regulators of those signif-
icant pathways to uncover novel regulatory mechanisms and prioritize the genes that
are involved. For shared pathways across the phenotypes and IR-specific pathways, we
detected repeated but meaningful PPI-specific subnetworks, such as T2DM, adipokin,
insulin, and EGFR signaling and, additionally, their neighboring subnetworks, includ-
ing MAPK, innate immune system, ERBB4, and renal-cell carcinogenetic mechanism. In
particular, the ERBB4 gene is a tyrosine-protein kinase that plays an essential role as a
cell surface receptor for the epidermal growth factor family, mediating activation of the
MAPK/PI3K/serine/threonine-specific protein kinase 1 (AKT1) [59,60]. The ERBB4 sig-
naling, in addition to PIK3/AKT, has been suggested as a potential target for treatment of
malignant bone tumors [61]. Further, ERBB4 genetic variants are associated with T2DM
and type 1 diabetes nephropathy [62,63]. Taken together, ERBB4 signaling adjacent to the
T2DM and renal cell carcinogenetic mechanism subnetworks can be studied as potential
promising targets and biomarkers for T2DM-associated renal cell carcinoma.

Of the top five KDs detected in relation to the T2DM subnetwork, two KDs (IRS1
and IGF1R) are known regulators for T2DM, so they have served as effective drug targets
according to the DrugBank database [64]. Further, the three remaining KDs identified in
the T2DM subnetwork include AKT1, HRAS, and JAK1, two (HRAS, and JAK1) of which
were also found to be top KDs in the insulin signaling network. Those three KDs are
interrelated with other diabetes genes and are involved in the downstream pathways such
as the interleukin-6/signal transducer and the activator of the transcription 3 (STAT3) and
immune/inflammation responses [65–71]; thus, they have implications as novel targets for
IGF/IR-associated disorders, including T2DM.

Our GWAS database may not capture the full array that covers unknown biology
in relation to the IGF-I/IR axis. We also did not perform directional analyses. Our ap-
proach did not detect epistatic interactions among genetic factors. Further, because our
study was restricted to non-Hispanic white postmenopausal women, the generalizabil-
ity of our findings to other populations is limited. Nevertheless, our study has detected
well-established pathways in relation to the phenotypes and several KDs that have been tar-
geted by FDA-approved drugs, indicating that our integrative multi-omics data approach
was robust and powerful. Further, consistent with the findings of other studies [26,38],
the KDs we identified in our study were not the top GWAS hits owing to evolutionary
constraints [72,73]. However, because those KDs have central properties in the networks,
exerting strong effects on phenotype regulation and related-disease risk/progression, they
can be considered to be better candidates for drug targets and biomarkers.

5. Conclusions

Our study identified both shared (e.g., T2DM, lipid metabolism, and EGFR signaling)
and distinct (e.g., mTOR, PI3K, and ERBB4 signaling for IR) molecular pathways underlying
IGF-I/IR axis regulation. The tissue-specific gene regulatory networks revealed several
key drivers, both well-established (e.g., IRS1 and IGF1R) and novel (e.g., AKT1, HRAS,
and JAK1), for the involved biologic mechanisms. Our findings warrant further validation
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in an independent large genetic and mechanistic dataset. Nevertheless, our study may
contribute to better capturing of the potential genetic targets for regulating the IGFs/IR
axis as preventive and therapeutic strategies for the associated diseases such as T2DM
and cancers.
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