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Background. Gastric cancer (GC) is believed to be one of the most common digestive tract malignant tumors. The prognosis of GC
remains poor due to its high malignancy, high incidence of metastasis and relapse, and lack of effective treatment. The constant
progress in bioinformatics and molecular biology techniques has given rise to the discovery of biomarkers with clinical value to
predict the GC patients’ prognosis. However, the use of a single gene biomarker can hardly achieve the satisfactory specificity
and sensitivity. Therefore, it is urgent to identify novel genetic markers to forecast the prognosis of patients with GC. Materials
and Methods. In our research, data mining was applied to perform expression profile analysis of mRNAs in the 443 GC patients
from The Cancer Genome Atlas (TCGA) cohort. Genes associated with the overall survival (OS) of GC were identified using
univariate analysis. The prognostic predictive value of the risk factors was determined using the Kaplan-Meier survival analysis
and multivariate analysis. The risk scoring system was built in TCGA dataset and validated in an independent Gene Expression
Omnibus (GEO) dataset comprising 300 GC patients. Based on the median of the risk score, GC patients were grouped into
high-risk and low-risk groups. Results. We identified four genes (GMPPA, GPC3, NUP50, and VCAN) that were significantly
correlated with GC patients’ OS. The high-risk group showed poor prognosis, indicating that the risk score was an effective
predictor for the prognosis of GC patients. Conclusion. The signature consisting of four glycolysis-related genes could be used to
forecast the GC patients’ prognosis.

1. Introduction

Gastric cancer (GC) is one of the most common malignan-
cies throughout the world. Although the incidence of GC
has been declined in recent year, GC remains one of the most
aggressive malignant tumors that severely threaten human
health [1, 2]. According to the statistics data, there were
951,600 newly diagnosed cases of GC and 723,100 deaths
related to GC in 2012 [3]. At present, most of the GC patients
have already been at the progressive stage upon diagnosis or
have even missed the best timing for surgical resection [4].
GC patients at the progressive stage usually have a low five-

year overall survival (OS) due to recurrence and metastasis.
Even patients with the same degree of progression may differ
in prognosis and treatment efficacy [4, 5]. Therefore, early
diagnosis and prognostic evaluation of GC are highly impor-
tant. Efforts should be made to look for useful biomarkers to
evaluate the prognosis of GC patients and to identify poten-
tial high-risk GC patients.

In recent years, a variety of biomarkers have been used as
prognostic predictors of the GC patients. For example, the
high expression of ANKRD49 is correlated to the size, infil-
tration, and metastasis of GC and facilitates the progression
and poor prognosis of GC patients [6]. Besides, Tumor
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Necrosis Factor Receptor Superfamily Member 11B
(TNFRSF11B) can significantly promote GC cell prolifera-
tion, migration, and invasion while inhibiting the apoptosis
of the GC cells by activating the Wnt/β-catenin signaling
pathway in GC cells. As a result, the survival of GC patients
is lowered [7]. In addition, study has shown that JMJD2A
regulates the growth of GC and high expression of JMJD2A
predicts poor overall survival. Therefore, JMJD2A can serve
as an independent prognostic factor [8]. Many other micro-
RNAs have been found correlated with the prognosis of the
GC patients. They are also considered as the proven bio-
markers for GC with potential clinical value [9]. Along with
the rapid development of high-throughput sequencing and
the emergence of bioinformatics, our understanding about
tumors has been greatly elevated. In the big data era, the min-
ing of tumor information has deepened our knowledge of
genomic changes associated with the complex diseases. An
increasing number of potential biomarkers related to survival
and prognosis have been developed through the mining of
public databases. However, a single biomarker hardly
achieves a good prediction effect, while a gene expression sig-
nature consisting of several genetic markers may improve the
sensitivity and specificity of prediction. Prediction based on
multiple genes can help the physicians to choose the best
therapeutic regimen. However, many pathways are not being
explored to identify novel biomarkers for GC. There exists a
need to look for efficient and sensitive biomarkers for GC.

In the present study, TCGA database was utilized to
uncover new prognostic biomarkers of GC patients [10].
Complete mRNA expression datasets were extracted from
the GC patients in TCGA and Gene Expression Omnibus
(GEO) databases [11]. A signature consisting of four genes
that could accurately forecast the GC patients’ prognosis
was established in TCGA dataset and validated in the GEO
dataset. To our delight, this glycolysis-related genic signature
could effectively distinguish the GC patients showing favor-
able overall survival from those with poor prognosis.

2. Materials and Methods

2.1. Data Acquisition. The clinical information of 443 GC
patients and mRNA expression data of 378 GC patients were
downloaded from TCGA database (Table 1). The gene
expression and clinical information data of 300 GC patients
were retrieved from the GEO database (GSE62254). The clin-
ical data include sex, age, survival time, overall survival sta-
tus, grading, tumor-node-metastasis (TNM) staging, clinical
T stage, clinical N stage, and clinical M stage.

2.2. Gene Set Enrichment Analysis (GSEA). Gene Set Enrich-
ment Analysis (GSEA) software was used to determine
whether the identified gene set differs significantly between
the GC group and the normal tissue group [12]. We used
random seeds and the default parameters in the GSEA anal-
ysis. Next, the expression matrix by the composition of 321
mRNAs in GC samples and 33 paracancerous tissues samples
used as controls downloaded from TCGA database were ana-
lyzed by the software, and five glycolysis-related gene sets
were incorporated, respectively, for the analysis of the gene

set enrichment significance. Finally, a normalized P value
(P < 0:05) was considered statistically significant.

2.3. Survival Analysis.We used Kaplan-Meier survival analy-
sis by survival package of R to evaluate the association
between OS and genes’ expression, age, TNM staging, T
stage, N stage, and M stage. Log-rank method was used to
determine the difference in overall survival between two sub-
groups of GC patients. For the univariate analysis, we used
logistic regression model to analyze the association between
OS and gene expression. We also used logistic regression
model to perform multivariate analysis which determined
the association between OS and gene expression as well as
various clinical factors. The hazard ratio and the 95%

Table 1: Clinical data of GC patients (n = 443) obtained from The
Cancer Genome Atlas.

Variables Patients, n (%)

Sex 443

Male 285 (64.33%)

Female 158 (35.67%)

Age (years)

≤65 197 (44.47%)

>65 241 (54.4%)

Grade

G1 12 (2.7%)

G2 159 (35.89%)

G3 263 (59.36%)

Gx 9 (2.03%)

TNM stage

I 59 (13.31%)

II 130 (29.34%)

III 183 (41.30%)

IV 44 (9.93%)

Unknown 28 (6.32%)

T stage

T1 23 (5.19%)

T2 93 (20.99%)

T3 198 (44.69%)

T4 119 (26.86%)

TX 10 (2.25%)

N stage

N0 132 (29.79%)

N1 119 (26.86%)

N2 85 (19.18%)

N3 88 (19.86%)

NX 17 (3.83%)

Unknown 2 (0.45%)

M stage

M0 391 (88.26%)

M1 30 (6.77%)

MX 22 (4.49%)

TX, NX, and MX are unknown cancer stages.
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confidence interval of hazard ratio were extracted from the
logistic regression model.

2.4. The Construction of Risk Score.We used TCGA dataset to
process training procedures and GEO dataset to process val-
idation procedures. For the training procedure, first, we used
median value of gene expression to divide the GC patients
into high expression group and low expression group; candi-
date prognosis-associated genes were identified by univariate
analysis.

The mRNAs were grouped into risk genes (hazard ratio,
HR > 1) and protective genes (0 < HR < 1) [13]. Then, multi-
variate analysis was carried out to validate the association of
the risk genes with overall survival after adjustment of clini-
cal features. In order to obtain optimal gene combination to
predict the prognosis, we used both-sided stepwise regression
to analyze optimal risk gene combination by MASS package
of R. As a result, the risk score formula was established by lin-
ear combination of the top four prognosis-associated genes
with the lowest step Akaike Information Criterion (AIC)
value of stepwise regression analysis, including GMPPA,
GPC3, NUP50, and VCAN, using regression coefficients of
multivariate Cox regression models.

Risk score = 〠
n

i=1
Genei × Expression of βi: ð1Þ

β was the coefficient derived from the multivariate
regression models of TCGA cohort. For the validation proce-
dure, we used the abovementioned model to perform multi-
variate analysis on the GEO dataset. Then, the prognostic
significance of risk score was verified by Kaplan-Meier sur-
vival analysis and difference in survival curves was compared
by log-rank method in TCGA and GEO datasets. The prog-
nostic importance of risk score was further assessed by
receiver operating characteristic (ROC) curve analysis in
both TCGA and GEO datasets to evaluate the performance
of the risk score model [14]. Then, the values of area under
the curve (AUC) were determined accordingly for the risk
score. P < 0:05 was considered statistically significant. All
the analyses were performed in R.

2.5. Differential Expression and Mutation Analyses. To com-
pare the expression level of certain risk genes between cases
and controls of GC, the differential gene expression was
determined by the Student t-test between the 33 adjacent
noncancerous tissues and 238 GC tissues. Mutations and
expression data of the selected genes were both obtained
from TCGA dataset. All statistical analyses were conducted
using R 3.6.2. P < 0:05 was considered statistically significant.

3. Results

3.1. GSEA-Based Glycolysis-Related Gene Sets Show
Significant Differences between the Normal Gastric Samples
and Tumor Samples. The GSEA gene database was used to
collect glycolysis-related gene sets (https://www.gsea-msigdb
.org/gsea/msigdb/search.jsp). Five glycolysis-related gene sets
were identified, including BIOCARTA_GLYCOLYSIS_

PATHWAY, GO_GLYCOLYTIC_PROCESS, HALLMARK_
GLYCOLYSIS, KEGG_GLYCOLYSIS_GLUCONEOGENE-
SIS, and REACTOME_GLYCOLYSIS. In the next step, GSEA
was used to analyze whether these five glycolysis-related gene
sets were significantly differentially expressed between the GC
tissues and adjacent noncancerous tissues. We found that
GO_GLYCOLYTIC_PROCESS and REACTOME_GLYCOL-
YSIS were significantly differentially expressed between the
precancerous tissues and GC tissues (P < 0:01). However, the
differences in the other three glycolysis-related datasets were
not statistically significant (P > 0:05, Table 2, Figure 1).

3.2. Identification of the Glycolysis-Related Genes Correlated
to the Survival of GC Patients.We performed GSEA to screen
the specific functional gene sets that were significantly differ-
entially expressed in cancer tissues as compared to controls.
Survival analysis was used to analyze which genes in these
gene sets had an impact on the prognosis. Then, we per-
formed differential gene expression analysis to verify whether
prognostic genes are specifically expressed in cancer tissues.

In order to identify the novel biomarkers predicting the
GC patients’ prognosis, we first performed univariate Cox
regression analysis on the glycolysis-related genes. Twenty-
four genes were found significantly correlated to the OS of
the GC patients (P < 0:05 for all cases). After the adjustment
of clinical features, 18 independent genes were identified by
multivariate analysis, including 10 protective genes and 8 risk
genes. The GEO dataset validated that seven genes (GDP-
mannose pyrophosphorylase A (GMPPA), glypican 3
(GPC3), NDC1 transmembrane nucleoporin (NDC1), nucleo-
porin 50 (NUP50), solute carrier family 35 member A3
(SLC35A3), tyrosylprotein sulfotransferase 1 (TPST1), and
Versican (VCAN)) were significantly associated with overall
survival in both cohorts (Table 3, Supplementary Table 1).
The regression coefficients were calculated correspondingly.

We used both-sided stepwise regression to analyze optimal
gene combination. The results showed that GMPPA, GPC3,
NUP50, VCAN, and TPST1 and GMPPA, GPC3, NUP50,
and VCAN both reached the best result with the lowest AIC
value of 1488.9 among all combinations (Supplementary
Figure 1A). Then, we calculated the risk score of the test set
by two models, respectively, the AUC values of two models
were 0.603 and 0.607 (Supplementary Figure 1B), which
showed that the combination of GMPPA, GPC3, NUP50, and
VCAN was better than the other combination. So, a
prognostic prediction model based on the top four prognosis-
associated glycolysis-related genes was established as follows:

Risk score = 0:49 × Expression of GMPPAð Þ
+ 1:75 × Expression of GPC3ð Þ
+ 0:55 × Expression of NUP50ð Þ
+ 1:7 × Expression of VCANð Þ:

ð2Þ

Then, alterations in the expressions of these four genes of
378 GC patients were analyzed. Figure 2(a) shows that the
alterations in the four genes, GMPPA, GPC3, NUP50, and
VCAN, were 2.58%, 1.3%, 1.8%, and 11.63%, respectively. The
differential expression of these four genes in the GC tissues
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and normal tissues was further analyzed. The results showed
that three genes (GPC3, NUP50, and VCAN) were highly
expressed in the GC tissues, but lowly expressed in the
normal tissues (P < 0:05 for all cases, Student’s t-test,
Figure 2(b)).

3.3. Relations between the Risk Score and Prognosis of GC
Patients. The GC patients were divided into the high-risk
group and the low-risk group according to the median risk
score. Figure 3(a) shows the deceased GC patients showed sig-
nificantly higher risk scores than alive GC patients (P < 0:05
for all cases, Student’s t-test). Next, the value of these four
mRNA signatures in GC prognosis was determined. The
Kaplan-Meier curve showed that high risk scores were
significantly associated with poor prognosis (P < 0:001,
Figure 3(b)). Figure 3(c) shows the AUC value of the risk score
was 0.59 in TCGA dataset. Lastly, the negative correlation was
validated between risk score and overall survival, with an AUC
of 0.61 in the GEO cohort (Figures 3(c) and 3(d)).

3.4. The Risk Score Is an Independent Prognostic Indicator. In
order to compare risk scores with conventional clinical

Table 2: Gene sets enriched in GC (412 samples).

GS follow link to MSigDB Size NES
NOM FDR
P value q value

GO_GLYCOLYTIC_PROCESS 106 1.91 0.006 0.006

REACTOME_GLYCOLYSIS 72 1.97 0.004 0.004

HALLMARK_GLYCOLYSIS 200 1.36 0.144 0.144

BIOCARTA_GLYCOLYSIS_PATHWAY 3 0.58 0.941 0.941

KEGG_GLYCOLYSIS_GLUCONEOGENESIS 62 -1.30 0.182 0.182
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Figure 1: GSEA results of five gene set enrichment profiles (GO_GLYCOLYTIC_PROCESS, REACTOME_GLYCOLYSIS, HALLMARK_
GLYCOLYSIS, BIOCARTA_GLYCOLYSIS_PATHWAY and KEGG_GLYCOLYSIS_GLUCONEOGENESIS).

Table 3: Four prognostic genes were selected via univariable and
multivariable Cox regression analysis.

Gene
Univariate analysis Multivariate analysis

HR 95% CI P value HR 95% CI P value

GMPPA 0.63 0.45-0.88 <0.01 0.49 0.34-0.7 <0.01
GPC3 1.8 1.29-2.51 <0.01 1.75 1.21-2.55 <0.01
NUP50 0.66 0.47-0.91 0.01 0.55 0.38-0.8 <0.01
VCAN 1.67 1.2-2.33 <0.01 1.7 1.18-2.47 <0.01
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features, univariate and multivariate analyses were con-
ducted to estimate the significance of the above indicators
in TCGA cohort. These indicators include risk score, age,
gender, grading, and TNM staging. Our purpose was to com-
pare the risk scores and the common clinical features. Uni-
variate analysis revealed that age (HR: 1.02; 95% CI:
1.01~1.04; P < 0:01), TNM staging (HR: 1.58; 95% CI:
1.28~1.93; P < 0:01), clinical T stage (HR: 1.31; 95% CI:
1.07~1.61; P = 0:01), clinical N stage (HR: 1.34; 95% CI:
1.16~1.56; P < 0:01), clinical M stage (HR: 2.22; 95% CI:
1.28~3.86; P < 0:01), and risk score (HR: 1.22; 95% CI:
1.08~1.38; P < 0:01) were significantly correlated with the
overall survival. However, gender and grading were uncorre-
lated to overall survival (P > 0:05 for all cases, Table 4).
According to the multivariate analysis, risk score and age also
significantly affected the prognosis (P < 0:05 for all cases,

Table 4), indicating that these four genes were conducive to
survival prediction. The univariate and multivariate analyses
confirmed risk score was significantly negatively correlated
with overall survival in the GEO cohort (P < 0:05 for all cases,
Supplementary Table 2). Taken together, it is suggested that
the risk score is a reliable prognostic predictor for GC.

3.5. The Four-Gene Risk Score Predicts Overall Survival
Independently of Clinical Characteristics. Univariate analysis
was performed to identify the influential factors of OS. Age,
TNM staging, T stage, N stage, andM stage were significantly
correlated with OS of GC patients in TCGA dataset (P < 0:05
for all cases, Figure 4). Neither gender nor grading was signif-
icantly correlated to the poor survival prognosis of the GC
patients (P > 0:05 for all cases, Figure 4). As confirmed in
the GEO cohort, TNM staging, T stage, N stage, and M stage
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Figure 2: Identification of mRNAs correlated to survival of patients. (a) The mutation profile for the four genes in 387 GC samples. Ins:
insertion; Del: deletion; UTR: untranslated region; IGR: intergenic region. (b) Expression difference of four genes between normal and GC
tumor tissues.
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Figure 3: The four-gene signature predicts overall survival of the patients with GC. (a) Difference of mRNA risk score in deceased and alive
GC patients. (b) Kaplan-Meier curve of patients in subgroups of GC patients with different overall survival risks in TCGA dataset. (c) ROC
curves for the risk scores of TCGA and GEO datasets. (d) Kaplan-Meier curve of patients in subgroups of GC patients with different overall
survival risks in the GEO dataset.

Table 4: Univariable and multivariable analyses for each clinical feature.

Clinical feature
Univariate analysis Multivariate analysis

HR 95% CI P value HR 95% CI P value

Age 1.02 1.01-1.04 <0.01 1.03 1.01-1.05 <0.01
Gender 1.24 0.87-1.75 0.23 1.34 0.91-1.97 0.13

Grade 1.37 1.00-1.89 0.05 1.30 0.90-1.88 0.16

Stage 1.58 1.28-1.93 <0.01 1.38 0.92-2.08 0.12

T 1.31 1.07-1.61 0.01 0.98 0.73-1.32 0.89

M 2.22 1.28-3.86 <0.01 1.68 0.77-3.67 0.19

N 1.34 1.16-1.56 <0.01 1.11 0.8-1.40 0.36

Risk score 1.22 1.08-1.38 <0.01 1.51 1.04-2.21 0.03
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Figure 4: Continued.
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were also significantly associated with OS of GC patients
(P < 0:05 for all cases, Supplementary Figure 2).

In order to verify the accuracy of our analysis, we used the
Kaplan-Meier curve for stratification analysis of the above
results. Results showed that the risk score was negatively
associated with overall survival in the Stage I-II, T3-4, N1-
3, M1, and M0 subgroups except for the Stage III-IV, T1-2,
and N0 subgroups (P < 0:05 for all cases, Figure 5). The
GEO cohort validated risk score was an independent negative
prognostic factor in the Stage III-IV, T3-4, N0, N1-3, and M0
subgroups of GC patients except for the Stage I-II, T1-2, and
M1 subgroups (P < 0:05 for all cases, Supplementary
Figure 3). Thus, the risk score, to a large extent, might have
a high value for survival prediction among GC patients
independently of clinical characteristics.

4. Discussion

In the early 20th century, German scientist Warburg discov-
ered that when the cancer cells proliferate rapidly, glycolysis
was the preferred metabolic pathway even there is an ade-
quate supply of oxygen. This process provided energy and
precursors needed for the synthesis of biomacromolecules
in the cancer cells [15, 16]. Therefore, cancer cells have an
intense uptake of glucose under aerobic conditions. The
glycolysis-mediated energy production is known as the War-
burg effect or aerobic glycolysis [17]. So far, a large number of
studies have shown that the Warburg effect is closely related
to tumor occurrence, development, and prognosis [18]. Pre-
vious studies have shown that the glycolysis in cancer cells is
closely related to oncogene activation and cancer suppressor
gene inactivation. But most of these studies have focused on
the tumor occurrence, development mechanism, and patho-
genesis [19–21]. In contrast, few researchers are devoted to
the prognostic prediction of cancers based on the
glycolysis-related genes. Moreover, most of these studies
have focused on applying a single glycolysis-related bio-
marker to predict the prognosis of cancer patients, rather
than a group of glycolysis-related genes.

With the rapid advance of gene sequencing technology, we
are now able to extract gene expressions from the tumor sam-
ples to identify diagnostic and prognostic biomarkers for can-
cers. This is also the most common method at present [22].
Unlike the conventional approach, our study is aimed at look-
ing for biomarkers with prognostic significance by data min-
ing. First, we performed GSEA for the expressions of 321
mRNAs in 443 GC patients. We analyzed the differential
expression of the glycolysis-related gene sets in the GC tissues
and adjacent normal tissues. In order to identify genes with
prognostic predictive value in GC patients, we performed uni-
variate andmultivariate Cox regression analyses. Based on our
comprehensive analysis, the signature consisting of four
glycolysis-related genes was identified. GPC3 is a membrane-
bound heparan sulfate proteoglycan and overexpressed in
majority of hepatocellular carcinomas (HCC), 45% of squa-
mous cell lung cancer cases, and 19% of head and neck squa-
mous cell cancer cases [23]. It shows a relatively high
diagnostic value for HCC [24]. In line with our study, elevated
expression of GPC3 is predictive of an inferior prognosis in
HCC [25]. Anti-GPC3 antibody markedly inhibits the growth
of HepG2 cells and promotes cellular apoptosis in HCC [26].
Additionally, GPC3 is implicated in cellular protection against
mitoxantrone in gastric carcinoma cell line PG85-257RNOV,
characterized by reduced resistance to mitoxantrone and eto-
poside by anti-GPC3 ribozyme [27]. VCAN gene is related to
epithelial-mesenchymal transition (EMT), which is a key step
inducing distant metastasis of tumors. The high expression of
VCAN is associated with the poor prognosis of leukemia
patients. ShRNA-mediated silencing of VCAN can signifi-
cantly inhibit the migration and invasion of the leukemia cells,
which means that VCAN may be the novel diagnostic and
therapeutic target for AML [28]. Mutations in three genes
(DNAJC2, GMPPA, or MMRN2) are negatively associated
with survival in lung adenocarcinoma [29]. In line with our
study, Luo et al. identified 9 glycolysis-related genes (BPNT1,
DCN, FUT8, GMPPA, GPC3, LDHC, ME2, PLOD2, and
UGP2) and the risk score developed by the 9 genes was associ-
ated with a worse prognosis in gastric cancer [30]. NUP50 is a
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Figure 4: Kaplan-Meier survival analysis of clinical features and overall survival in GC patients in TCGA dataset ((a)–(g) represent age,
gender, grade, TNM stage, T stage, N stage, and M stage).
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Figure 5: Continued.
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nucleoplasmically oriented component of the nuclear pore
complex with a role in protein export [31]. NUP50 deletion
was associated with abnormalities in p27(Kip1) expression
and cell proliferation in the developing neuroepithelium in a
mouse model [32]. These results in combination with our
study support that GMPPA, GPC3, and VCAN are negative
prognostic factors in various cancer types; these genes might
provide novel therapeutic targets for cancer therapy.

As compared with the existing biomarkers for prognostic
prediction, the signature was a combination of several genes,
which showed some inherent benefits than a single gene. This
gene expression signature displayed higher specificity for prog-
nostic prediction and might serves as a tool for classification
prediction of GC patients. As shown by the results of the
Kaplan-Meier curve analysis, GC patients with a higher risk
score were associated with a poor prognosis. These results
implied that the risk score might be meaningful for prognostic
prediction of GC patients in the long run. The risk score may
provide a basis for the development of individualized therapies.
Although the signature consisting of the four glycolysis-related
genes was a reliable prognostic predictor for GC, our study had
certain limitations. Firstly, during stratification analysis, certain
clinical features, such as Stage III-IV, T1-2, might affect the pre-
dictive capability of risk score for GC patients. One possible
reason is that the sample size within subgroups is relatively
small, which led to the unreliable prediction. Also, we knew lit-
tle about certain genes as to their regulatory roles in glycolysis
and the influence on prognosis. Moreover, these genes are
not only involved in the glycolysis process, but the function
of four risk genes may also affect the prognosis by the effort
of cell adhesion and extracellular protein group expressions.
Therefore, further study is needed, which also provides a new
method for us to study the Warburg effect of GC.

In summary, a gene expression signature consisting of
four glycolysis-related genes was constructed using the bioin-
formatics technology, and these genes were associated with
the OS of GC patients. We verified that this gene expression
signature was able to predict the prognosis of GC patients.
Patients with a higher risk score were associated with worse
prognosis. Our findings revealed the regulatory mechanism
of specific genes in the glycolysis and its effect on the progno-
sis of GC.
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