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Aim: To assess and compare the changes in shape of encapsulated biconvex structures undergoing equatorial
traction with those changes reported in the human lens during accommodation.
Methods: Equatorial traction was applied to several different biconvex structures: air, water, and gel filled
mylar and rubber balloons and spherical vesicles. In the vesicles, traction was applied externally, using
optical tweezers, or from within, by the assembly of encapsulated microtubules. The shape changes were
recorded photographically and the change in central radius of curvature of water filled mylar balloons was
quantified.
Results: Whenever an outward equatorial force was applied to the long axis of long oval biconvex objects,
where the minor to major axis ratio was (0.6, the central surfaces steepened and the peripheral surfaces
flattened. Similar changes in the shape of the lens have been reported during human in vivo accommodation.
Conclusions: All biconvex structures that have been studied demonstrate similar shape changes in response to
equatorial traction. This effect is independent of capsular thickness. The consistent observation of this physical
change in the configuration of biconvex structures in response to outward equatorial force suggests that this
may be a universal response of biconvex structures, also applicable to the human lens undergoing
accommodation.

T
he mechanism of accommodation has been studied for over
400 years.1–16 Accommodation results from a change in the
shape of the crystalline lens.1 The lens is an encapsulated

biconvex object. This change in shape of the lens occurs as a
result of the force of ciliary muscle contraction transmitted
circumferentially to the equatorial capsular edge of the lens by
the zonules.

The widely accepted Helmholtz theory2 states that during
ciliary muscle contraction the tension on the zonules is
reduced, allowing the lens to become rounder and to increase
in central optical power. This theory was founded, in part, on an
intuitive belief that the application of equatorial tension to the
lens will flatten both its central and its peripheral surfaces.

As the lens is an encapsulated biconvex object, we tested this
assumption by recording the cross sectional profiles of other
encapsulated biconvex objects in response to equatorial tension.

METHODS
Balloons
Biconvex 9 inch mylar balloons with a wall thickness of
0.020 mm, and biconvex 8 inch rubber balloons, with wall
thickness of 0.350 mm, were filled with either air, water, or
gelatin. When filled, the balloons had a long oval profile,17 with
minor and major axes of ,175 mm and ,100 mm, respectively.
The elastic moduli of rubber and mylar are 4 MPa and 3 GPa,
respectively.

Each balloon was placed horizontally on an optical bench so
that its equatorial plane was parallel to the bench. A circular ring
light was centred above the balloon. The surface of the rubber
balloon was made reflective by applying mineral oil. The changes
in the reflection of the ring light from the surface of the balloon
were videographed while equatorial traction was manually
applied in one meridian or in two orthogonal meridians.

Radius of curvature measurement
A positional reference, a 6.35 mm diameter circular self-
adhesive red paper dot was attached at the central pole of the

upper surfaces of three water-filled mylar balloons. A Klein
keratoscope that had been modified by removing its central
convex lens was positioned above the balloon and centred at
the positional reference. The distance between the positional
reference and the keratometer was measured with an electronic
digital caliper.

Two horizontally mounted, electronically controllable micro-
meters were attached to the equator of the balloon, 180˚apart.
The keratometric images associated with 20 outward micro-
meter steps of 0.5 mm, followed by 20 inward steps of 0.5 mm,
were digitally photographed and measured in pixels. From the
known diameter of the image of the paper reference dot, the
diameter of the reflection of the second keratometric ring was
determined in millimetres. The magnification, m, of the
reflection of the second ring was calculated for each 0.5 mm
tractional step. Using the object distance, so, which was the
distance between the keratoscope and the pole of the balloon,
the image distance, si, was calculated using the following
formula18:

si = 2so 6m

Then the central radius of curvature, r, was calculated from the
mirror formula18:

Verification of the curvature measurement
Using the technique described above, the radii of six chrome
alloy steel precision metric balls traceable to NIST were
measured. Each ball incrementally increased in diameter in
1 mm steps from 25 mm to 30 mm, with a precision of ¡0.0025
mm. Each ball was measured in the 90˚and 180˚meridians five
independent times.
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Vesicles
An external force was applied to giant unilamellar vesicles
(,10 mm diameter) in one meridian using a laser tweezers. A
microscope stage was translated to bring the edge of a vesicle
into the laser spot, and then translated slowly and horizontally
away from the spot to apply the equatorial traction. The other
end of the equator of the vesicle was pinned to the microscope
slide. This ensured that the vesicle was only able to move in one

plane and could not rotate.19 20 In addition, an outward
equatorial force was applied from within the vesicles in one
meridian by the polymerisation of encapsulated microtubular
fibres.19 20 The vesicle profiles in response to the internal and
external forces were videographed.

RESULTS
Balloons
Qualitative curvature change
Equatorial traction applied at one meridian or at four points
spaced 90˚apart resulted in central steepening and peripheral
flatting of the surfaces of the mylar and rubber balloons,
whether they were filled with air, water, or gelatin (figs 1
and 2).

Validation of curvature measurements
The mean difference between the measured radii and the actual
radii of curvatures of the precision steel balls was 0.2 mm ¡0.3
mm. Therefore, the accuracy of the measuring technique21 for
the radius of curvature of the balloons was better than 1.0 mm
(fig 3).

Figure 1 (A) Air filled Mylar balloon. (B) A
gel filled Mylar balloon at baseline. (C)
During equatorial traction in one meridian

Figure 2 Reflection of the keratoscopic mires from the central surface of a
water filled mylar balloon. The 6.35 mm red paper dot attached to the
central surface of the balloon served as a positional reference. (A) Before
equatorial traction. (B) After equatorial traction applied in the 180˚
meridian. Note the mires become narrower in the 180˚ meridian and
elongated in the 90˚ meridian. The red paper reference dot remained the
same size, stayed circular, and did not shift in the 180˚ meridian with
equatorial traction.

Figure 3 A Bland–Altman plot21 of the difference between the measured
radius and the actual radius of the precision balls.
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Quantitative curvature change
For each 1% increase in equatorial diameter of the water filled
mylar balloon, the radius of curvature decreased by 2 mm in
the meridian of traction (fig 4). When equatorial traction was
decreased, the radius of curvature increased in that meridian.
The change in the radius of curvature in response to equatorial
traction demonstrated hysteresis with full recovery to the
baseline curvature (fig 4)

Vesicles
In response to an outward equatorial force, applied either
externally by the laser tweezers or from within by polymerisa-
tion of the microtubular fibres, the vesicle changed shape in
three distinct phases (figs 5 and 6).

First, the vesicle’s profile became oval, with a decrease in
central thickness and flattening of its central and peripheral
surfaces. With further force, and a significant increase in its
equatorial diameter, the vesicle’s profile changed from oval to a
long oval—that is, it had a minor to major axis ratio of (0.6.
From this second phase, only a small additional increase in
force, reflected by a small increase in the vesicle’s equatorial
diameter, caused it to go into the third phase, where its central
thickness increased, its central surfaces steepened, and its
peripheral surfaces flattened (figs 5 and 6).

DISCUSSION
Positional references
Stability in shape, size, and position of the fixed reference dot
relative to the camera is needed to control for any artefactual
balloon movement during traction. Without this information
about the stability of these reference dot parameters, changes in
the mires due to movement of the balloon relative to the
keratometer could be misinterpreted to reflect surface changes
in the balloon.

The reference dot remained spherical in shape, unchanged in
size, and stable in position in the 180˚meridian during traction
(fig 2). This indicates that the observed surface contour changes
in the mires in the 180˚meridian are real and not induced by
positional balloon movements during traction.

There is evidence in the 90˚ meridian of a downward
displacement in the positional reference dot during traction
(fig 2). This downward movement, of approximately 0.5 mm,
identifies tilting of the balloon during traction. This evidence of
torsion in the 90˚ meridian confounds any interpretation of
keratometric observations in the 90˚ meridian. Only the
observations in the 180˚ meridian, which was stable, can be
interpreted quantitatively with confidence.

Surface curvature change
An outward equatorial force applied to biconvex objects with a
long oval profile results in central steepening and peripheral
flattening. Similar shape changes occur to the profiles of air,
water, and gel filled balloons and vesicles (figs 1, 2, 5, and 6).
Equatorial traction was applied by astronaut Kerwin in 1973 to
a freely floating 6 cubic inch drop of water in the microgravity
environment of the SkyLab (NASA).22 The central steeping and
peripheral flattening of the water drop, a non-encapsulated
object, are evident (fig 7).

Flattening of the central surface in response to equatorial
traction only occurs when the object is initially spherical or
oval. Once the object has a long oval profile,17 similar to the
profile of the human crystalline lens, additional equatorial
traction inducing only a small increase in equatorial diameter
results in central steepening and peripheral flattening. Whether
the object has a thick or a thin capsule, a smooth capsule like
the vesicles, or a capsule with wrinkles near its equator, like the
balloons, these changes in shape are independent of the elastic
modulus of the capsule or the compressibility of the enclosed
material. These changes occurred with rubber and Mylar
balloons, whether they were filled with water or gel, which is
negligibly compressible, or with air, which is 15 000 times more
compressible.

Human crystalline lens accommodation
Central steepening and peripheral lenticular surface flattening
is associated with human in vivo accommodation and has been
observed when zonular traction is applied to fresh physiologi-
cally preserved postmortem intact human lenses.23–25 These
surface changes have been demonstrated during human in vivo
accommodation by each of the following: the change in
position and size of reflections from the centre and peripheral
anterior surface of the lens3 4; the change in the radius of
curvature of the anterior lenticular surface with Scheimpflug
photography26 and high speed optical coherent tomography27;
and the negative shift in spherical aberration.1 28–30

The lens
Capsular thickness
The lens capsule is a smooth elastic membrane and is thinner at
the centre of the lens and thicker at the periphery.4 It is,
however, reasonable to simulate the lens with an object that
has a capsule with uniform thickness. Mathematical modelling
has demonstrated that, although the response to zonular
traction is enhanced by the thickness variation of the lens
capsule, the same qualitative lenticular shape changes occur if
the lens capsule had uniform thickness.31 Furthermore, it has
been shown that there is no significant difference in capsular
thickness between humans, primates, and rabbits even though
they have significantly different accommodative amplitudes.32

Material properties
It is reasonable to simulate the young lens stroma with a
uniform material such as water or a gel. The lens, like other
biological tissues, is negligibly compressible.33–38 In the young
lens the material properties of the cortex and nucleus, including
its optical density, are essentially the same.38–40 The lens fibres
are tightly packed without extracellular space.41 The shear
modulus of the young lens is very low39 and the strength of the
attachment of the lens fibres to the capsule is also very weak.42

There is no cement substance or other extracellular material
between the capsule and cortical cells. There are few interlock-
ing processes between the first eight to 10 layers of cortical cells
that are under the capsule.41 The cortical fibres are easily
hydrodissected from the lens capsule and the lens nucleus.42–44

Consequently, the effect of interlens fibre attachments and lens

Figure 4 A graph of the mean change in the central radius of curvature of
the water filled mylar balloons in the meridian of increasing (solid line) and
decreasing (dashed line) equatorial traction applied in the 180˚ meridian.
Error bars are one standard deviation of the mean.
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sutures on the lenticular response to zonular traction is
probably negligible.

Surrounding environment
The negligible compressibility of the lens results in the absence
of any effect of intraocular pressure on lenticular accommoda-

tion. Experimentally, a change in intraocular pressure of up to
6 mm Hg did not alter human accommodative amplitude.45

Consequently, the modelling of lenticular in vivo accommoda-
tion does not require that the simulating object be placed in a
specialised surrounding fluid or pressure chamber.

Location of tractional force
Traction was applied to the biconvex objects only at their
equatorial edge. The zonules are attached anterior and posterior
to the equatorial edge of the lens capsule. Finite element
analysis has shown that equatorial traction applied to only the
equatorial edge of the lens capsule is sufficient to simulate
accommodation.46–48

Implications
Capsular thickness variation
In an attempt to explain the negative shift in spherical
aberration that occurs during accommodation, Fincham4

Figure 5 Vesicle profiles during an
outwardly increasing equatorial force
applied from within the vesicles by
microtubule polymerisation. (A)
Demonstrates an oval profile. (B)
Demonstrates further elongation of the
vesicle in the axis of force resulting in a long
oval profile. (C) Demonstrates the central
steepening, peripheral flattening, and
increase in central thickness associated with
a small increase in the equatorial diameter of
the long oval profile.

Figure 6 Vesicle profiles during application of an outwardly increasing
equatorial force applied externally by optical tweezers. (A) Demonstrates
an oval profile. (B) Demonstrates further elongation of the vesicle in the axis
of force resulting in a long oval profile. (C) Demonstrates the central
steepening, peripheral flattening, and increased central thickness
associated with a small increase in the equatorial diameter of the long oval
profile.

Figure 7 Changes in shape of a freely floating 6 cubic inch drop of water
in the microgravity environment of the SKYLAB in response to manual
application of equatorial traction. (A) Demonstrates the baseline circular
water drop profile. (B) Demonstrates elongation of the water drop profile in
the axis of force. (C) Demonstrates central steepening and peripheral
flattening of the water drop profile (reproduced with permission from the
National Aeronautics and Space Administration, NASA).
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postulated that the thicker peripheral region of the lens capsule
is less pliable so that as the zonules relax during accommoda-
tion the peripheral lens surface flattens as the central region of
the capsule steepens. Mathematical modelling predicts the
opposite,31 and shows that during zonular relaxation the
natural variation in capsular thickness enhances peripheral
steepening. Our simulations also show that it is unlikely that
the natural variation in capsular thickness plays a significant
role in the qualitative change in lenticular shape that is
associated with zonular traction. The same topographical
changes occurred in response to an outward equatorial force
applied to biconvex objects independent of their capsular
thickness or modulus of elasticity.

Helmholtz theory
The Helmholtz theory2 predicts that both the central and
peripheral surfaces of all biconvex objects, independent of their
shape, should become thinner and flatter with equatorial
traction. Our simulations show that this will only occur when
the biconvex object is spherical or oval.

Accommodative response
This study indicates that a small increase in equatorial diameter
of objects with a long oval profile (a minor to major axis ratio of
(0.6) will result in central steepening and peripheral flattening
of the surfaces. Human and primate lenses have a similar ratio
of their central thickness to equatorial diameter after birth,
always (0.6.49 Interestingly, animals that have minimal
accommodative amplitude—such as mice, dogs, cats, rabbits,
goats, sheep, cows, and horses—have lenses with minor axis to
major axis ratios greater than 0.6.52–56

Conclusions
In summary, we find that an outward equatorial force applied
to biconvex objects with a long oval profile, similar to the
profile of the human crystalline lens, results in central
steepening and peripheral surface flattening. The wide and
consistent distribution of this physical change in the config-
uration of biconvex surfaces in response to outward equatorial
force suggests the universality of these changes and why
similar dynamics might be expected of the human lens during
accommodation. These conclusions are opposite to those
associated with the Helmholtz theory of accommodation.
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