Synthesis, Pharmacological Characterization, and Structure-Activity Relationship Studies of Small Molecular Agonists for the Orphan GPR88 Receptor

Chunyang Jin,,$^{\star}{ }^{\dagger}$ Ann M. Decker, ${ }^{\dagger}$ Xi-Ping Huang, ${ }^{\ddagger}$ Brian P. Gilmour, ${ }^{\dagger}$ Bruce E. Blough, ${ }^{\dagger}$ Bryan L. Roth, ${ }^{\dagger}$ Yang Hu, ${ }^{\text {s }}$ Joseph B. Gill, ${ }^{\S}$ and X. Peter Zhang ${ }^{\S}$
${ }^{\dagger}$ Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
${ }^{\dagger}$ National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology and Division of Chemical Biology and Medicinal Chemistry, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
${ }^{\S}$ Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States

(S) Supporting Information

Abstract

GPR88 is an orphan G-protein-coupled receptor (GPCR) enriched in the striatum. Genetic deletion and gene expression studies have suggested that GPR88 plays an important role in the regulation of striatal functions and is implicated in psychiatric disorders. The signal transduction pathway and receptor functions of GPR88, however, are still largely unknown due to the lack of endogenous and synthetic ligands. In this paper, we report the synthesis of a GPR88 agonist 2-PCCA and its pure diastereomers, which were functionally characterized in both transiently and stably expressing GPR88 HEK293 cells. 2-PCCA inhibited isoproterenol-stimulated cAMP accumulation in a concentration-dependent manner in cells expressing GPR88 but not in the control cells, suggesting that the observed cAMP inhibition is mediated through GPR88 and that GPR88 is coupled to G α_{i}. 2-PCCA did not induce calcium mobilization in GPR88 cells, indicating no G α_{q}-mediated response. A structure-activity relationship (SAR) study of 2-PCCA was also conducted to explore the key structural features for GPR88 agonist activity.

KEYWORDS: Orphan GPR88, agonists, 2-PCCA

GPR88 is an orphan G-protein-coupled receptor, which was originally identified as a striatum-specific receptor (designated Strg/GPR88), ${ }^{1}$ though it is also expressed in other brain regions, including the cerebral cortex, amygdala, and hypothalamus. ${ }^{2}$ In the striatum, GPR88 is highly expressed in both D_{1} and D_{2} receptor-expressing medium spiny neurons (MSNs), ${ }^{2 \mathrm{~b}, 3}$ suggesting the receptor may play a role in regulating dopaminergic activity. GPR88 knockout mice demonstrated disrupted prepulse inhibition of the startle response, a phenotype of schizophrenia, and exhibited D_{2} receptors hypersensitivity (as evidenced by increased sensitivity to apomorphine-induced climbing and stereotypy, and amphet-amine-stimulated locomotor activity). ${ }^{4}$ In another study of GPR88 knockout mice, ${ }^{3,5}$ the animals exhibited increased locomotion, and impaired motor coordination and cue-based learning. GPR88 re-expression normalized these impaired behaviors, suggesting that GPR88 dysfunction may contribute to abnormal behaviors observed in neurological and psychiatric diseases. ${ }^{3}$ In line with these findings from GPR88 knockout studies, transcriptional profiling studies have revealed GPR88 gene expression is altered by treatment or conditions related to schizophrenia, ${ }^{6}$ bipolar disorder, ${ }^{7}$ depression, ${ }^{8}$ and drug addiction. ${ }^{9}$ Taken together, these studies suggest that GPR88 plays an important role in the regulation of striatal functions
and is a promising drug target for treating basal gangliaassociated disorders.

In order to elucidate the biological function of GPR88, selective agonists are required. Recently, a series of surrogate agonists of GPR88 have been reported in the patent literature and were suggested to activate GPR88 coupling to $\mathrm{G} \alpha_{\mathrm{i}}$ pathways. ${ }^{10}$ However, the function and structure-activity relationship (SAR) relative to these compounds are unclear. In this paper, we report the synthesis of a GPR88 ligand 2PCCA [(1R*,2R*)-2-(pyridin-2-yl)cyclopropanecarboxylic acid ((2S,3S)-2-amino-3-methylpentyl)-(4'-propylbiphenyl-4-yl)amide (1); Figure 1] and its pure ($1 R, 2 R$)- and ($1 S, 2 S$)diastereomers ($\mathbf{2}$ and 3 , respectively), which were functionally characterized in the GPR88 cell-based cAMP assays. A series of 2-PCCA analogues ($\mathbf{4 a - i}, \mathbf{5 a}-\mathbf{e}, \mathbf{6 a}$, and $\mathbf{6 b}$; Figure 2) were also synthesized and examined to explore the SAR of this chemical scaffold at GPR88.

[^0]

1 * (R, R) and (S, S) mixture
2 * (R, R)-isomer

3

Figure 1. Structures of 2-PCCA (1), 2, and 3.

Figure 2. 2-PCCA analogues.

CHEMISTRY

2-PCCA (1) and the 4 -substituted bisphenyl analogues $\mathbf{4 a - i}$ were synthesized by a known procedure, ${ }^{10 \mathrm{~b}}$ outlined in Scheme 1 , with some modifications. A diastereomeric mixture was first synthesized to characterize the GPR88 signaling pathways. Asymmetric synthesis of both pure diastereomers 2 and 3 of 2PCCA was conducted later to determine which isomer is more active. Cyclopropanation of 2 -vinylpyridine (8) with tert-butyl diazoacetate under catalytic conditions led to tert-butyl ester 9, which was then treated with 4 M HCl in dioxane to give the racemic ($1 R^{*}, 2 R^{*}$)-2-(pyridin-2-yl)cyclopropanecarboxylic acid (10) in 56% yield. Reductive amination of aldehyde 12, prepared by Dess-Martin oxidation of commercially available (-)-(2S,3S)-N-Boc-2-amino-3-methyl-1-pentanol with 4-bromoaniline (11) afforded amine 13 in 75% yield. With both building blocks available, amide 14 was synthesized in 72% yield by converting acid 10 into the corresponding acid chloride, followed by reaction with amine 13. Suzuki coupling of 14 with an appropriate arylboronic acid under microwave conditions gave intermediates $\mathbf{1 5 a} \mathbf{- j}$ in the range of $65-96 \%$ yields. Removal of the Boc protecting group with 4 M HCl in dioxane provided $\mathbf{1}$ and $\mathbf{4 a - i}$ in $90-98 \%$ yields. Compounds $\mathbf{1}$ and $\mathbf{4 a - i}$ were determined to be $1: 1$ diastereomeric mixtures by ${ }^{1} H$ NMR and HPLC analyses.

Synthesis of pure diastereomers 2 and 3 of 2-PCCA is described in Scheme 2. The key intermediate 14, prepared from enantiomerically pure (-)-(2S,3S)-N-Boc-2-amino-3-methyl-1pentanol as described in Scheme 1, is a $1: 1$ mixture of $(1 R, 2 R)$ and $(1 S, 2 S)$-diastereomers differentiating at the configuration of the trans-substituted cyclopropane ring. Asymmetric syn-
thesis of $(1 R, 2 R)-14$ was accomplished starting from the preparation of pure enantiomer ($1 R, 2 R$)-2-(pyridin-2-yl)cyclopropanecarboxylic acid $((1 R, 2 R)-10)$. Thus, asymmetric cyclopropanation of 8 using the known chiral porphyrin catalyst $\left[\mathrm{Co}\left(3,5-\mathrm{Di}^{t} \mathrm{Bu} \text {-ChenPhyrin) }\right]^{11}\right.$ afforded the tert-butyl ester $(1 R, 2 R)-9$ in 97% ee, as determined by chiral HPLC analysis. The chiral porphyrin Co (II) catalysts have been well studied in the asymmetric cyclopropanation of olefins using diazoacetates to give the corresponding cyclopropanes with high diastereoselectivity and enantioselectivity. ${ }^{11}$ Assignment of the absolute configuration of $(1 R, 2 R)-9$ was made based on an analogy to the known $(1 R, 2 R)-2$-phenyl-1-cyclopropanecarboxylic acid tert-butyl ester ${ }^{11 a}$ synthesized using the same chiral porphyrin catalyst. Acidic hydrolysis of $(1 R, 2 R)-9$ led to acid $(1 R, 2 R)-10$, which was then coupled with amine $\mathbf{1 3}$ to provide $(1 R, 2 R)-14$ in 40% yield over three steps. To obtain the pure diastereomer $(1 S, 2 S)-14$, the mixture $\mathbf{1 4}$ was separated by HPLC using a ChiralPak IA column to afford ($1 R, 2 R$)-14 and ($1 S, 2 S$)-14 in 40% and 39% yield, respectively. Suzuki coupling of $(1 R, 2 R)$ - $\mathbf{1 4}$ and ($1 S, 2 S$)-14 with 4-propylphenylboronic acid, followed by removal of the Boc protecting group with HCl gave 2 and 3, in 80% and 81% yield, respectively.

Compounds 5 a-e were synthesized using the procedure, outlined in Scheme 3, analogous to that used to prepare 1. Reductive amination of an appropriate aldehyde 17a-e with 4 bromoaniline (11) or 4-(4'-propylphenyl)aniline (16) afforded amine 18a-e in $50-86 \%$ yields. Amide formation with the acid chloride, prepared from the racemic 10, gave 19a-e in 53-60\% yields. Suzuki coupling of $19 a, 19 b$, and $19 e$ with 4 propylphenylboronic acid yielded $53-80 \%$ of 20a, 20b, and

Scheme 1^{a}

${ }^{a}$ Reagents: (a) tert-butyl diazoacetate, 5,10,15,20-tetraphenyl-21H,23H-porphine cobalt(II), toluene, $80^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (b) $4 \mathrm{M} \mathrm{HCl} / \mathrm{dioxane}, \mathrm{DCM}$, rt, overnight; (c) $\mathrm{NaBH}(\mathrm{OAc})_{3}$, 1,2-dichloroethane, rt, overnight; (d) 10/oxalyl chloride/DCM $/ 40{ }^{\circ} \mathrm{C} / 2 \mathrm{~h}$, concentrated, then $13 / \mathrm{Et}_{3} \mathrm{~N} / \mathrm{DCM}, \mathrm{rt}$, overnight; (e) arylboronic acid, $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{DCM}, \mathrm{K}_{3} \mathrm{PO}_{4}, \mathrm{DME} / \mathrm{H}_{2} \mathrm{O}(3: 1)$, microwave, $160{ }^{\circ} \mathrm{C}, 6 \mathrm{~min}$; (f) $4 \mathrm{M} \mathrm{HCl} / \mathrm{dioxane}, \mathrm{DCM}, \mathrm{rt}, 6 \mathrm{~h}$.

20e. Deprotection of the Boc group furnished 5a-e as 1:1 diastereomeric mixtures in $92-98 \%$ yields.

Synthesis of compounds $\mathbf{6 a}$ and $\mathbf{6 b}$ started with the reaction of amine 13 with ($1 R, 2 R$)-2-phenyl-1-cyclopropanecarboxylic acid 12 and 2-pyridylacetic acid (Scheme 4), respectively. The resulting amides 21a and 21b were coupled with 4propylphenylboronic acid, followed by HCl treatment to provide $\mathbf{6 a}$ and $\mathbf{6 b}$ in 55% and 33% overall yield, respectively. All synthesized compounds were $>95 \%$ pure as determined by HPLC analyses. The ${ }^{1} \mathrm{H}$ NMR spectra of the target compounds were in agreement with the assigned structures.

RESULTS AND DISCUSSION

Despite emerging pharmacological implications of the orphan GPR88 receptor, little is known regarding its downstream signaling pathways, as identification of endogenous and synthetic ligands has been elusive. Results from the patent literature ${ }^{10}$ indicated that GPR88 couples to $\mathrm{G} \alpha_{i}$ proteins and thereby inhibits cAMP production. To develop an appropriate cell based assay system to support drug discovery for the GPR88 receptor, we initially transiently cotransfected HEK 293T cells with the human GPR88 cDNA and a luminescent cAMP biosensor and determined both $\mathrm{G} \alpha_{\mathrm{s}}$ and $\mathrm{G} \alpha_{\mathrm{i}}$ activations. ${ }^{13}$ 2-PCCA (1) produced no measurable increases in cAMP levels at concentrations up to $30 \mu \mathrm{M}$. As a positive control, isoproterenol (ISO) activated the endogenous β_{2} adrenergic receptors expressed in HEK293T cells and greatly stimulated cAMP production in a concentration-dependent
manner. 2-PCCA inhibited ISO-induced cAMP formation with a pEC_{50} value of $6.06\left(\mathrm{EC}_{50}=877 \mathrm{nM}\right)$ in GPR88 cells but not in the control cells transiently transfected with the biosensor, demonstrating that 2-PCCA activates GPR88-mediated $\mathrm{G} \alpha_{\mathrm{i}}$ signaling (Figure 3). In addition, the ($1 R, 2 R$)-isomer $2\left(\mathrm{EC}_{50}=\right.$ 373 nM) is approximately 5 -fold more potent than the ($1 S$, $2 S$)-isomer 3. Furthermore, 2-PCCA did not induce calcium mobilization measured by the fluorescent imaging plate reader (FLIPR) calcium assay ${ }^{13 \mathrm{~b}, 14}$ in HEK293T/GPR88 cells (data not shown), indicating that GPR88 is likely not coupled to G $\alpha_{\text {q }}$ proteins in our assay systems.

To further characterize the GPR88 in vitro functions and explore the key structural features of 2-PCCA agonist activity, HEK293 cells stably expressing the human GPR88 receptor and the GloSensor-22F cAMP construct were established. In the stable GPR88-22F cells, 2-PCCA and its pure diastereomer 2 had pEC_{50} values of $6.04\left(\mathrm{EC}_{50}=911 \mathrm{nM}\right)$ and $6.22\left(\mathrm{EC}_{50}=\right.$ 603 nM), respectively. To explore the SAR of 2-PCCA, substitution effects of the bisphenyl moiety were first examined. As seen in Table 1, unsubstituted analogue $4 \mathbf{a}$ was less potent than 2-PCCA. The 4-position tolerated small to medium size of alkyl substitutions with the methyl analogue 4b $\left(\mathrm{EC}_{50}=845\right.$ $\mathrm{nM})$ and cyclohexyl analogue $4 \mathrm{e}\left(\mathrm{EC}_{50}=746 \mathrm{nM}\right)$ being the most potent compounds in the series. Replacing the methyl group with an electron-withdrawing trifluoromethyl group (4f) markedly reduced activity. The addition of a fluoro or chloro group to the 4 -position led to $\mathbf{~ g}$ and 4 h , respectively, resulting in even lower potency. Somewhat surprisingly, the 4 -acetyl

Scheme 2^{a}

$(1 R, 2 R)-14$

(1S, 2S)-14

${ }^{a}$ Reagents: (a) tert-butyl diazoacetate, $1 \mathrm{~mol} \% \mathrm{Co}(3,5-\mathrm{di}-t-\mathrm{Bu}-\mathrm{ChenPhyrin}$) catalyst, DMAP, toluene, rt, 48 h ; (b) $4 \mathrm{M} \mathrm{HCl} / \mathrm{dioxane}$, DCM, rt, overnight; (c) ($1 R, 2 R$)-10/oxalyl chloride/DCM/40 ${ }^{\circ} \mathrm{C} / 2 \mathrm{~h}$, concentrated, then $13 / \mathrm{Et}_{3} \mathrm{~N} / \mathrm{DCM}$, rt, overnight; (d) HPLC separation; (e) 4propylphenylboronic acid, $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{DCM}, \mathrm{K}_{3} \mathrm{PO}_{4}, \mathrm{DME} / \mathrm{H}_{2} \mathrm{O}(3: 1)$, microwave, $160{ }^{\circ} \mathrm{C}, 6 \mathrm{~min}$; (f) $4 \mathrm{M} \mathrm{HCl} /$ dioxane, DCM , rt, 6 h .

Scheme 3^{a}

${ }^{a}$ Reagents: (a) $\mathrm{NaBH}(\mathrm{OAc})_{3}$, 1,2 -dichloroethane, rt, overnight; (b) $\mathbf{1 0}$ /oxalyl chloride $/ \mathrm{DCM} / 40^{\circ} \mathrm{C} / 2 \mathrm{~h}$, concentrated, then $\mathbf{1 8 a}-\mathrm{e} / \mathrm{Et}_{3} \mathrm{~N} / \mathrm{DCM}$, rt, overnight; (c) 4-propylphenylboronic acid, $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{DCM}, \mathrm{K}_{3} \mathrm{PO}_{4}, \mathrm{DME} / \mathrm{H}_{2} \mathrm{O}$ (3:1), microwave, $160{ }^{\circ} \mathrm{C}, 6 \mathrm{~min}$; (d) $4 \mathrm{M} \mathrm{HCl} /$ dioxane, DCM , rt, 6 h.
analogue 4 i possessed a similar potency $\left(\mathrm{EC}_{50}=923 \mathrm{nM}\right)$ at GPR88 relative to 2-PCCA.

Investigation of the substituted ethylamine moiety of 2PCCA (Table 2) showed that hydrophobic substitutions were well tolerated. The trend of increased potency with large
substituents ($\mathbf{5 a - e}$) at the ethylamine moiety suggests that a hydrophobic pocket may be present in the GPR88 receptor. A limited examination of the amide carbonyl groups observed that the pyridyl group in 2-PCCA could be replaced with a phenyl group (6a) while causing only a slight decrease in potency.

Scheme 4^{a}

${ }^{a}$ Reagents: (a) 21a: (1R, 2R)-2-phenyl-1-cyclopropanecarboxylic acid/ $\mathrm{SOCl}_{2} /$ reflux, overnight, concentrated, then $13 / \mathrm{Et}_{3} \mathrm{~N} / \mathrm{DCM}$, rt, overnight; 21b: 2-pyridylacetic acid, HBTU, $\mathrm{Et}_{3} \mathrm{~N}$, MeCN, rt, overnight; (b) 4-propylphenylboronic acid, $\mathrm{Pd}\left(\mathrm{dppf}^{2}\right) \mathrm{Cl}_{2} \cdot \mathrm{DCM}_{1} \mathrm{~K}_{3} \mathrm{PO} \mathrm{O}_{4}, \mathrm{DME} / \mathrm{H}_{2} \mathrm{O}(3: 1)$, microwave, $160{ }^{\circ} \mathrm{C}$, 6 min ; (c) $4 \mathrm{M} \mathrm{HCl} /$ dioxane, DCM, rt, 6 h .

Figure 3. HEK 293T cells were transiently transfected with GPR88 and GloSensor cAMP construct (A) or GloSensor cAMP only (B). 2-PCCA (1), 2, and 3 inhibited isoproterenol-induced cAMP production in GPR88 cells, but not in the control cells. The data are the means of quadruplicate measurements with standard deviation shown as error bars and are representative of at least three independent experiments.

However, replacement of the cyclopropane moiety with a methylene group ($\mathbf{6 b}$) resulted in a loss of activity, indicating the central linker of the aromatic and carbonyl moieties is critical for GPR88 recognition.

CONCLUSIONS

In summary, we demonstrated that GPR88 couples to the G α_{i} subunits, and is activated by 2-PCCA in both transient and stable GPR88 expressing cells. In an effort to determine the key structural features for 2-PCCA agonist activity, we designed and synthesized a series of 2-PCCA analogues 4a-i, 5a-e, 6a, and $\mathbf{6 b}$. Further pharmacological evaluation of the $(1 R, 2 R)$-isomer 2 and phenyl analogue $\mathbf{6 a}$, including receptor specificity and in vivo behavioral studies, are in progress. These studies will facilitate the identification of highly potent, selective ligands for GPR88 and the understanding of its physiological functions in vivo.

METHODS

Chemistry. General Methods. Melting points were determined using a MEL-TEMP II capillary melting point apparatus and are uncorrected. Nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR) spectra were obtained on a Bruker Avance DPX-300 MHz NMR spectrometer. Chemical shifts are reported in parts per million (ppm) with reference to internal solvent. ${ }^{13} \mathrm{C}$ NMR data of diastereomeric mixtures were not reported due to the complicity of the spectra. Mass spectra (MS) were run on a PerkinElmer Sciex API 150 EX mass spectrometer. HRMS spectra were run on a Waters Synapt G2 HDMS Q-TOF mass spectrometer, using electrospray ionization in positive ion mode. Optical rotations were measured on an AutoPol III polarimeter, purchased from Rudolf Research. Analytical thin-layer chromatography (TLC) was carried out using EMD silica gel $60 \mathrm{~F}_{254}$ TLC plates. TLC visualization was achieved with a UV lamp or in an iodine chamber. Flash column chromatography was done on a CombiFlash Companion system using Isco prepacked silica gel columns. Unless otherwise stated, reagent-grade chemicals were obtained from commercial sources and were used without further purification. All moisture- and air-sensitive reactions and reagent transfers were carried out under dry nitrogen.

Table 1. Structures and Activities of Compounds 1, 2, and $4 a-i$

compd ${ }^{\text {a }}$	R	$\mathrm{pEC}_{50}\left(\mathrm{EC}_{50}, \mathrm{nM}\right)^{\text {b }}$
2-PCCA (1)	Pr	6.04 ± 0.06 (911)
2	Pr	6.22 ± 0.10 (603)
4a	H	5.48 ± 0.08 (3321)
4b	Me	6.07 ± 0.14 (845)
4c	Et	5.70 ± 0.08 (1989)
4d	i-Bu	5.74 ± 0.06 (1803)
4 e	cyclohexyl	6.13 ± 0.13 (746)
4f	CF_{3}	5.49 ± 0.08 (3266)
4 g	fluoro	$\mathrm{NA}^{\text {c }}$
4h	chloro	$\mathrm{NA}^{\text {c }}$
4i	acetyl	6.03 ± 0.05 (923)

${ }^{a}$ All compounds were tested as the HCl salt. ${ }^{b}{ }_{\mathrm{pEC}}^{50}$ 数 \pm standard error of at least three independent experiments performed in duplicate. ${ }^{c} \mathrm{EC}_{50}>10 \mu \mathrm{M}$, tested in two independent experiments performed in duplicate.

Table 2. Structures and Activities of Compounds 5a-e, 6a, and $6 b$

${ }^{a}$ All compounds were tested as the HCl salt. ${ }^{b}{ }_{\mathrm{pEC}}^{50}$ values are means \pm standard error of at least three independent experiments performed in duplicate. ${ }^{c} \mathrm{EC}_{50}>10 \mu \mathrm{M}$
(\pm)-tert-Butyl $\left(1 R^{*}, 2 R^{*}\right)$-2-(pyridin-2-yl)cyclopropanecarboxylate (9). A solution of 2-vinylpyridine (8) ($0.58 \mathrm{~mL}, 5.4 \mathrm{mmol}$), tert-butyl diazoacetate ($0.88 \mathrm{~mL}, 6.4 \mathrm{mmol}$), and $5,10,15,20$-tetraphenyl$21 H, 23 H$-porphine cobalt(II) $(72 \mathrm{mg}, 0.11 \mathrm{mmol})$ in toluene $(25$ mL) was heated in a sealed tube at $80^{\circ} \mathrm{C}$ for 2 h . After cooling to room temperature, the mixture was concentrated under reduced pressure. Flash column chromatography of the crude product on silica gel using $0-30 \%$ EtOAc in hexanes afforded 9 ($0.82 \mathrm{~g}, 69 \%$) as a
brown oil: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 8.44(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.56(\mathrm{td}, J=6.0,3.0 \mathrm{~Hz}, 1 \mathrm{H})), 7.23(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-6.93(\mathrm{~m}$, $1 \mathrm{H}), 2.51$ (ddd, $J=9.0,6.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{ddd}, J=9.0,6.0,3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.57-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz ; $\left.\mathrm{CDCl}_{3}\right) \delta 172.6,159.3,149.4,135.9,123.3,121.1,80.5,28.2,26.8$, 25.4, 17.2; MS (ESI) $m / z 220.4[\mathrm{M}+\mathrm{H}]^{+}$.
(\pm)-($\left.1 R^{*}, 2 R^{*}\right)$-2-(Pyridin-2-yl)cyclopropanecarboxylic Acid Hydrochloride (10). To a solution of $9(0.80 \mathrm{~g}, 3.65 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$ was added 4 M HCl in dioxane $(3 \mathrm{~mL})$, and the reaction was stirred at room temperature overnight. The solvent was removed under reduced procedure. The residue was triturated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / $\mathrm{Et}_{2} \mathrm{O}$ to afford $10(0.60 \mathrm{~g}, 81 \%)$ as a greenish solid: mp $141-143{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz ; DMSO- d_{6}) $\delta 12.00$ (br s, 1 H), 8.67 (dd, $J=6.0$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{td}, J=6.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.68(\mathrm{~m}, 2 \mathrm{H}), 2.90$ (ddd, $J=9.0,6.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.33$ (ddd, $J=9.0,6.0,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.80-1.60(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} ;$ DMSO- d_{6}) $\delta 172.5,156.1$, 134.5, 143.0, 123.8, 123.4, 25.0, 23.2, 17.3; MS (ESI) $m / z 164.4[\mathrm{M}+$ $\mathrm{H}]^{+}$.
tert-Butyl \{(2S,3S)-1-[(4-Bromophenyl)amino]-3-methylpentan-2$y /\}$ carbamate (13). To a solution of $(-)-(2 S, 3 S)-N$-Boc-2-amino-3-methyl-1-pentanol $(2.17 \mathrm{~g}, 10.0 \mathrm{mmol})$ in water-saturated $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ mL) at room temperature was added Dess-Martin reagent (8.90 g , 21.0 mmol), and the reaction was stirred for 1 h . Additional watersaturated $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added every 15 min during the reaction time. The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ and poured into a solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(17 \mathrm{~g})$ in 80% saturated $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$. After stirring for 10 min , the layers were separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$. The combined organic layers were washed with ice-cold saturated $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and water (30 $\mathrm{mL})$. The solution was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure to give the crude aldehyde 12. To a solution of 4bromoaniline (11) ($1.72 \mathrm{~g}, 10.0 \mathrm{mmol}$) in dichloroethane (60 mL) was added the above crude aldehyde, followed by $\mathrm{NaBH}(\mathrm{OAc})_{3}(4.24$ $\mathrm{g}, 20.0 \mathrm{mmol})$. The mixture was stirred at room temperature overnight. Saturated $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ was added, and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30$ $\mathrm{mL})$. The combined organic layers were washed with brine $(3 \times 30$ $\mathrm{mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Flash column chromatography of the crude product on silica gel using $0-$ $30 \% \mathrm{EtOAc}$ in hexanes afforded $13(2.78 \mathrm{~g}, 75 \%)$ as a white solid: mp $103-105{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{23}+11.4^{\circ}\left(c 0.52, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR (300 MHz; $\left.\mathrm{CDCl}_{3}\right) \delta 7.24(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.45(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.52(\mathrm{~d}, J$ $=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.82-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.30-3.14(\mathrm{~m}$, $1 \mathrm{H}), 3.05-2.89(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.23-1.10$ $(\mathrm{m}, 1 \mathrm{H}), 0.95(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 154.9,145.7,130.1,112.4,106.9,77.9,52.9,45.0$, 35.7, 26.6, 23.6, 13.8, 9.9; MS (ESI) $m / z 371.3[\mathrm{M}+\mathrm{H}]^{+}\left({ }^{79} \mathrm{Br}\right), 373.3$ $[\mathrm{M}+\mathrm{H}]^{+}\left({ }^{81} \mathrm{Br}\right)$.
tert-Butyl [(2S,3S)-1-\{4-Bromophenyl-[(1R*,2R*)-2-(pyridin-2-yl)-cyclopropanecarbonyl]amino\}-3-methylpentan-2-yl]carbamate (14). To a solution of $10(0.40 \mathrm{~g}, 2.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at room temperature was added oxalyl chloride $(0.35 \mathrm{~mL}, 4.0 \mathrm{mmol})$ and DMF ($50 \mu \mathrm{~L}$). The mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 2 h and then cooled to room temperature and concentrated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and treated with 13 $(0.74 \mathrm{~g}, 2.0 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.1 \mathrm{~mL}, 8.0 \mathrm{mmol})$. The resulting solution was stirred at room temperature overnight. Saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added, and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine $(3 \times 20 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Flash column chromatography of the crude product on silica gel using $0-25 \% \mathrm{EtOAc}$ in hexanes afforded $14(0.74 \mathrm{~g}, 72 \%, 1: 1$ diastereomeric mixture) as a light yellow foam: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.58-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.22-6.98(\mathrm{~m}, 4 \mathrm{H}), 4.96(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.45-4.25(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.21-3.06(\mathrm{~m}, 1 \mathrm{H})$, $2.71-2.62(\mathrm{~m}, 0.5 \mathrm{H}), 2.58-2.48(\mathrm{~m}, 0.5 \mathrm{H}), 1.98-1.86(\mathrm{~m}, 1 \mathrm{H})$, $1.75-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.35(\mathrm{~m}, 3 \mathrm{H}), 1.45$ and $1.40(2 \mathrm{~s}, 9 \mathrm{H})$, $1.15-1.02(\mathrm{~m}, 1 \mathrm{H}), 0.92-0.80(\mathrm{~m}, 6 \mathrm{H})$; MS (ESI) $\mathrm{m} / \mathrm{z} 516.7[\mathrm{M}+$ $\mathrm{H}]^{+}\left({ }^{79} \mathrm{Br}\right), 518.6[\mathrm{M}+\mathrm{H}]^{+}\left({ }^{81} \mathrm{Br}\right)$.
tert-Butyl [(2S,3S)-1-\{(4'-Propylbiphenyl-4-yl)-[(1R*,2R*)-2-(pyri-din-2-yl)cyclopropanecarbonyl]amino\}-3-methylpentan-2-yl]carbamate (15a). A mixture of $14(0.48 \mathrm{~g}, 0.92 \mathrm{mmol})$, 4propylphenylboronic acid $(0.25 \mathrm{~g}, 1.4 \mathrm{mmol}), \mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(70 \mathrm{mg}, 0.092 \mathrm{mmol})$, and $\mathrm{K}_{3} \mathrm{PO}_{4}(0.58 \mathrm{~g}, 2.7 \mathrm{mmol})$ in dimethoxyethane $(10.5 \mathrm{~mL})$ and water $(3.5 \mathrm{~mL})$ was heated in a sealed vessel by microwave irradiation at $160{ }^{\circ} \mathrm{C}$ for 6 min . The resulting mixture was poured into 1 N NaOH solution $(30 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Flash column chromatography of the crude product on silica gel using $0-$ $20 \% \mathrm{EtOAc}$ in hexanes afforded $15 \mathrm{a}(0.49 \mathrm{~g}, 96 \%, 1: 1$ diastereomeric mixture) as a white foam: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 8.28-8.22$ $(\mathrm{m}, 1 \mathrm{H}), 7.58-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.32-7.13(\mathrm{~m}, 5 \mathrm{H}), 7.03-6.96(\mathrm{~m}, 1 \mathrm{H})$, $5.12-5.05(\mathrm{~m}, 1 \mathrm{H}), 4.48-4.36(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.24-$ $3.13(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.50(\mathrm{~m}, 3 \mathrm{H}), 2.05-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.58(\mathrm{~m}$, $3 \mathrm{H}), 1.51-1.38(\mathrm{~m}, 3 \mathrm{H}), 1.47$ and $1.43(2 \mathrm{~s}, 9 \mathrm{H}), 1.56-1.40(\mathrm{~m}, 1 \mathrm{H})$, $0.97(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.92-0.80(\mathrm{~m}, 6 \mathrm{H})$; MS (ESI) $\mathrm{m} / \mathrm{z} 557.0[\mathrm{M}$ $+\mathrm{H}]^{+}$.
tert-Butyl [(2S,3S)-1-\{(Biphenyl-4-yl)-[(1R*,2R*)-2-(pyridin-2-yl)-cyclopropanecarbonyl]amino\}-3-methylpentan-2-yl]carbamate (15b). The procedure for 15 a was followed using $30 \mathrm{mg}(0.058 \mathrm{mmol})$ of 14 and $11 \mathrm{mg}(0.087 \mathrm{mmol})$ of phenylboronic acid to give 24 mg (81%) of $\mathbf{1 5 b}$ as a $1: 1$ diastereomeric mixture: ${ }^{1} \mathrm{H}$ NMR (300 MHz ; $\left.\mathrm{CDCl}_{3}\right) \delta 8.28-8.22(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.38(\mathrm{~m}, 6 \mathrm{H}), 7.37-7.14(\mathrm{~m}$, $5 \mathrm{H}), 7.12-6.95(\mathrm{~m}, 1 \mathrm{H}), 5.14-5.07(\mathrm{~m}, 1 \mathrm{H}), 4.49-4.36(\mathrm{~m}, 1 \mathrm{H})$, $3.85-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.26-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.66(\mathrm{~m}, 0.5 \mathrm{H}), 2.60-$ $2.50(\mathrm{~m}, 0.5 \mathrm{H}), 2.08-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.66(\mathrm{~m}, 0.5 \mathrm{H}), 1.65-1.57$ $(\mathrm{m}, 0.5 \mathrm{H}), 1.55-1.36(\mathrm{~m}, 3 \mathrm{H}), 1.47$ and $1.43(2 \mathrm{~s}, 9 \mathrm{H}), 1.18-1.02(\mathrm{~m}$, $1 \mathrm{H}), 0.94-0.80(\mathrm{~m}, 6 \mathrm{H})$; MS (ESI) $\mathrm{m} / \mathrm{z} 514.7[\mathrm{M}+\mathrm{H}]^{+}$.
tert-Butyl $\left[(2 S, 3 S)-1-\left\{\left(4^{\prime}-M e t h y l b i p h e n y l-4-y l\right)-\left[\left(1 R^{*}, 2 R^{*}\right)-2-(p y r i-\right.\right.\right.$ din-2-yl)cyclopropanecarbonyl]amino\}-3-methylpentan-2-yl]carbamate (15c). The procedure for 15a was followed using 30 mg $(0.058 \mathrm{mmol})$ of 14 and $12 \mathrm{mg}(0.087 \mathrm{mmol})$ of 4-methylphenylboronic acid to give $20 \mathrm{mg}(65 \%)$ of $\mathbf{1 5 c}$ as a $1: 1$ diastereomeric mixture: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 8.29-8.22(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.38(\mathrm{~m}$, $5 \mathrm{H}), 7.37-7.16(\mathrm{~m}, 5 \mathrm{H}), 7.02-6.92(\mathrm{~m}, 1 \mathrm{H}), 5.13-5.06(\mathrm{~m}, 1 \mathrm{H})$, $4.48-4.37(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.24-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.73-$ $2.65(\mathrm{~m}, 0.5 \mathrm{H}), 2.60-2.50(\mathrm{~m}, 0.5 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.08-1.96(\mathrm{~m}$, $1 \mathrm{H}), 1.76-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.37(\mathrm{~m}, 3 \mathrm{H}), 1.47$ and $1.43(2 \mathrm{~s}, 9 \mathrm{H})$, $1.17-1.00(\mathrm{~m}, 1 \mathrm{H}), 0.92-0.78(\mathrm{~m}, 6 \mathrm{H})$; MS (ESI) $\mathrm{m} / \mathrm{z} 528.7[\mathrm{M}+$ $\mathrm{H}]^{+}$.
tert-Butyl [(2S,3S)-1-\{(4'-Ethylbiphenyl-4-yl)-[(1R*,2R*)-2-(pyri-din-2-yl)cyclopropanecarbonyl]amino\}-3-methylpentan-2-yl]carbamate (15d). The procedure for 15a was followed using 30 mg (0.058 mmol) of 14 and $13 \mathrm{mg}(0.087 \mathrm{mmol})$ of 4-ethylphenylboronic acid to give $25 \mathrm{mg}(80 \%)$ of 15 d as a $1: 1$ diastereomeric mixture: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 8.28-8.23(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.38(\mathrm{~m}, 5 \mathrm{H})$, 7.37-7.15 (m, 5H), 7.04-6.95 (m, 1H), 5.15-5.05 (m, 1H), 4.50$4.37(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.66(\mathrm{~m}$, $2.5 \mathrm{H}), 2.60-2.48(\mathrm{~m}, 0.5 \mathrm{H}), 2.10-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.54(\mathrm{~m}, 1 \mathrm{H})$, $1.53-1.37(\mathrm{~m}, 3 \mathrm{H}), 1.47$ and $1.43(2 \mathrm{~s}, 9 \mathrm{H}), 1.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$, $1.17-1.00(\mathrm{~m}, 1 \mathrm{H}), 0.93-0.78(\mathrm{~m}, 6 \mathrm{H})$; MS (ESI) $m / z 542.6[\mathrm{M}+$ $\mathrm{H}]^{+}$.
tert-Butyl [(2S,3S)-1-\{(4'-Isobutylbiphenyl-4-yl)-[(1R*,2R*)-2-(pyr-idin-2-yl)cyclopropanecarbonyl]amino\}-3-methylpentan-2-yl]carbamate (15e). The procedure for 15a was followed using 30 mg (0.058 mmol) of 14 and $16 \mathrm{mg}(0.087 \mathrm{mmol})$ of 4-isobutylphenylboronic acid to give $23 \mathrm{mg}(77 \%)$ of $\mathbf{1 5 e}$ as a $1: 1$ diastereomeric mixture: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 8.28-8.23(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.38(\mathrm{~m}$, $5 \mathrm{H}), 7.34-7.15(\mathrm{~m}, 5 \mathrm{H}), 7.04-6.95(\mathrm{~m}, 1 \mathrm{H}), 5.14-5.05(\mathrm{~m}, 1 \mathrm{H})$, 4.50-4.36 (m, 1H), 3.86-3.68 (m, 1H), 3.24-3.14 (m, 1H), 2.74$2.65(\mathrm{~m}, 0.5 \mathrm{H}), 2.60-2.46(\mathrm{~m}, 2.5 \mathrm{H}), 2.10-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.54$ $(\mathrm{m}, 1 \mathrm{H}), 1.53-1.36(\mathrm{~m}, 3 \mathrm{H}), 1.47$ and $1.43(2 \mathrm{~s}, 9 \mathrm{H}), 1.16-1.00(\mathrm{~m}$, $1 \mathrm{H}), 0.98-0.78(\mathrm{~m}, 12 \mathrm{H})$; MS (ESI) $\mathrm{m} / \mathrm{z} 570.6[\mathrm{M}+\mathrm{H}]^{+}$.
tert-Butyl [(2S,3S)-1-\{(4'-Cyclohexylbiphenyl-4-yl)-[(1R*,2R*)-2-(pyridin-2-yl)cyclopropanecarbonyl]amino\}-3-methylpentan-2-yl]carbamate (15f). The procedure for 15a was followed using 30 mg (0.058 mmol) of 14 and $18 \mathrm{mg}(0.087 \mathrm{mmol})$ of 4-cyclohexylphenylboronic acid to give 28 mg (81%) of $\mathbf{1 5 f}$ as a $1: 1$ diastereomeric mixture: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 8.28-8.21$
$(\mathrm{m}, 1 \mathrm{H}), 7.58-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.32-7.12(\mathrm{~m}, 5 \mathrm{H}), 7.02-6.92(\mathrm{~m}, 1 \mathrm{H})$, $5.15-5.05(\mathrm{~m}, 1 \mathrm{H}), 4.50-4.36(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.26-$ $3.13(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.64(\mathrm{~m}, 0.5 \mathrm{H}), 2.60-2.48(\mathrm{~m}, 1.5 \mathrm{H}), 2.05-1.71$ $(\mathrm{m}, 7 \mathrm{H}), 1.69-1.25(\mathrm{~m}, 8 \mathrm{H}), 1.47$ and $1.43(2 \mathrm{~s}, 9 \mathrm{H}), 1.17-1.00(\mathrm{~m}$, $1 \mathrm{H}), 0.96-0.80(\mathrm{~m}, 6 \mathrm{H})$; MS (ESI) $m / z 596.9[\mathrm{M}+\mathrm{H}]^{+}$.
tert-Butyl [(2S,3S)-1-\{(4'-Trifluoromethylbiphenyl-4-yl)-[(1R*,2R*)-2-(pyridin-2-yl)cyclopropanecarbonyl]amino\}-3-methyl-pentan-2-yl]carbamate (15g). The procedure for 15 a was followed using $30 \mathrm{mg}(0.058 \mathrm{mmol})$ of 14 and $17 \mathrm{mg}(0.087 \mathrm{mmol})$ of 4 trifluoromethylphenylboronic acid to give $25 \mathrm{mg}(74 \%)$ of $\mathbf{1 5 g}$ as a $1: 1$ diastereomeric mixture: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 8.30-8.22$ $(\mathrm{m}, 1 \mathrm{H}), 7.72-7.40(\mathrm{~m}, 7 \mathrm{H}), 7.38-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.02-6.93(\mathrm{~m}, 1 \mathrm{H})$, 5.13-5.02 (m, 1H), 4.50-4.38 (m, 1H), 3.84-3.65 (m, 1H), 3.28$3.15(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.65(\mathrm{~m}, 0.5 \mathrm{H}), 2.61-2.48(\mathrm{~m}, 0.5 \mathrm{H}), 2.08-1.96$ $(\mathrm{m}, 1 \mathrm{H}), 1.76-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.37(\mathrm{~m}, 3 \mathrm{H}), 1.47$ and $1.43(2 \mathrm{~s}$, $9 \mathrm{H}), 1.18-1.00(\mathrm{~m}, 1 \mathrm{H}), 0.94-0.78(\mathrm{~m}, 6 \mathrm{H})$; MS (ESI) $\mathrm{m} / \mathrm{z} 582.7$ $[\mathrm{M}+\mathrm{H}]^{+}$.
tert-Butyl [(2S,3S)-1-\{(4'-Fluorobiphenyl-4-yl)-[(1R*,2R*)-2-(pyri-din-2-yl)cyclopropanecarbonyl]amino\}-3-methylpentan-2-yl]carbamate (15h). The procedure for 15a was followed using 30 mg $(0.058 \mathrm{mmol})$ of 14 and $12 \mathrm{mg}(0.087 \mathrm{mmol})$ of 4-fluorophenylboronic acid to give $20 \mathrm{mg}(74 \%)$ of $\mathbf{1 5 h}$ as a $1: 1$ diastereomeric mixture: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 8.30-8.22(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.48(\mathrm{~m}$, $4 \mathrm{H}), 7.30-7.18(\mathrm{~m}, 6 \mathrm{H}), 7.02-7.92(\mathrm{~m}, 1 \mathrm{H}), 5.12-5.05(\mathrm{~m}, 1 \mathrm{H})$, $4.52-4.38(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.76-$ $2.65(\mathrm{~m}, 0.5 \mathrm{H}), 2.61-2.48(\mathrm{~m}, 0.5 \mathrm{H}), 2.08-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.55$ $(\mathrm{m}, 1 \mathrm{H}), 1.54-1.37(\mathrm{~m}, 3 \mathrm{H}), 1.47$ and $1.43(2 \mathrm{~s}, 9 \mathrm{H}), 1.18-1.00(\mathrm{~m}$, $1 \mathrm{H}), 0.95-0.80(\mathrm{~m}, 6 \mathrm{H})$; MS (ESI) $m / z 532.5[\mathrm{M}+\mathrm{H}]^{+}$.
tert-Butyl [(2S,3S)-1-\{(4'-Chlorobiphenyl-4-yl)-[(1R*,2R*)-2-(pyri-din-2-yl)cyclopropanecarbonyl]amino\}-3-methylpentan-2-yl]carbamate (15i). The procedure for 15 a was followed using 30 mg (0.058 mmol) of 14 and $14 \mathrm{mg}(0.087 \mathrm{mmol})$ of 4-chlorophenylboronic acid to give $22 \mathrm{mg}(74 \%)$ of $\mathbf{1 5 i}$ as a $1: 1$ diastereomeric mixture: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 8.30-8.21(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.36(\mathrm{~m}$, $6 \mathrm{H}), 7.30-7.15(\mathrm{~m}, 4 \mathrm{H}), 7.02-7.95(\mathrm{~m}, 1 \mathrm{H}), 5.10-5.00(\mathrm{~m}, 1 \mathrm{H})$, $4.50-4.35(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.26-3.15(\mathrm{~m}, 1 \mathrm{H}), 2.76-$ $2.65(\mathrm{~m}, 0.5 \mathrm{H}), 2.61-2.48(\mathrm{~m}, 0.5 \mathrm{H}), 2.08-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.55$ $(\mathrm{m}, 1 \mathrm{H}), 1.54-1.37(\mathrm{~m}, 3 \mathrm{H}), 1.47$ and $1.42(2 \mathrm{~s}, 9 \mathrm{H}), 1.16-1.00(\mathrm{~m}$, $1 \mathrm{H}), 0.95-0.80(\mathrm{~m}, 6 \mathrm{H})$; MS (ESI) $m / z 548.5[\mathrm{M}+\mathrm{H}]^{+}$.
tert-Butyl [(2S,3S)-1-\{(4'-Acetylbiphenyl-4-yl)-[(1R*,2R*)-2-(pyri-din-2-yl)cyclopropanecarbonyl]amino\}-3-methylpentan-2-yl]carbamate (15j). The procedure for 15 a was followed using 30 mg (0.058 mmol) of 14 and $14 \mathrm{mg}(0.087 \mathrm{mmol})$ of 4 -acetylphenylboronic acid to give $25 \mathrm{mg}(76 \%)$ of $\mathbf{1 5 j}$ as a $1: 1$ diastereomeric mixture: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 8.30-8.21(\mathrm{~m}, 1 \mathrm{H}), 8.06-7.98(\mathrm{~m}$, $2 \mathrm{H}), 7.68-7.48(\mathrm{~m}, 5 \mathrm{H}), 7.38-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.02-7.93(\mathrm{~m}, 1 \mathrm{H})$, $5.10-5.00(\mathrm{~m}, 1 \mathrm{H}), 4.50-4.36(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.28-$ $3.15(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.65(\mathrm{~m}, 0.5 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 2.61-2.48(\mathrm{~m}$, $0.5 \mathrm{H}), 2.08-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.37(\mathrm{~m}, 3 \mathrm{H})$, 1.47 and $1.43(2 \mathrm{~s}, 9 \mathrm{H}), 1.16-0.98(\mathrm{~m}, 1 \mathrm{H}), 0.92-0.78(\mathrm{~m}, 6 \mathrm{H})$; MS (ESI) $m / z 557.2[\mathrm{M}+\mathrm{H}]^{+}$.
(1R*,2R*)-2-(Pyridin-2-yl)cyclopropanecarboxylic Acid [(2S,3S)-2-Amino-3-methylpentyl]-(4'-propylbiphenyl-4-yl)amide Dihydrochloride (1). A solution of $\mathbf{1 5 a}(150 \mathrm{mg}, 0.27 \mathrm{mmol})$ and 4 M HCl in dioxane $(2 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was stirred at room temperature for 6 h . The solvent was removed under reduced pressure. The resulting residue was triturated with $\mathrm{Et}_{2} \mathrm{O}$ to give $\mathbf{1}(135 \mathrm{mg}, 95 \%, 1: 1$ diastereomeric mixture) as a white solid: ${ }^{1} \mathrm{H}$ NMR (300 MHz ; $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.66-8.54(\mathrm{~m}, 1 \mathrm{H}), 8.37-8.23(\mathrm{~m}, 1 \mathrm{H}), 7.82-7.44(\mathrm{~m}$, $8 \mathrm{H}), 7.32-7.22(\mathrm{~m}, 2 \mathrm{H}), 4.43$ (dd, $J=15.0,9.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.28$ (dd, J $=15.0,9.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.82(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.68(\mathrm{~d}, J=15.0 \mathrm{~Hz}$, $0.5 \mathrm{H}), 3.46-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.11-3.02(\mathrm{~m}, 0.5 \mathrm{H}), 3.00-2.90(\mathrm{~m}$, $0.5 \mathrm{H}), 2.62(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.22-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.88(\mathrm{~m}$, $1 \mathrm{H}), 1.87-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.12(\mathrm{~m}, 2 \mathrm{H}), 1.02-0.78(\mathrm{~m}, 9 \mathrm{H})$; HRMS (ESI) calcd. for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 456.3009. Found: 456.3020.
(1R*,2R*)-2-(Pyridin-2-yl)cyclopropanecarboxylic Acid [(2S,3S)-2-Amino-3-methylpentyl]-(biphenyl-4-yl)amide Dihydrochloride (4a). The procedure for 1 was followed using $20 \mathrm{mg}(0.039 \mathrm{mmol})$ of $\mathbf{1 5 b}$ and 1 mL of 4 M HCl in dioxane to give $17 \mathrm{mg}(90 \%)$ of 4 a as a $1: 1$ diastereomeric mixture: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.28-8.21$
$(\mathrm{m}, 1 \mathrm{H}), 7.72-7.52(\mathrm{~m}, 5 \mathrm{H}), 7.48-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 1 \mathrm{H})$, $7.19-7.10(\mathrm{~m}, 1 \mathrm{H}), 4.40-4.22(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.40-$ $3.22(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.62(\mathrm{~m}$, $2 \mathrm{H}), 1.50-1.15(\mathrm{~m}, 3 \mathrm{H}), 0.99$ and $0.97(2 \mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.90-$ $0.80(\mathrm{~m}, 3 \mathrm{H})$; HRMS (ESI) calcd. for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 414.2541. Found: 414.2540.
$\left(1 R^{*}, 2 R^{*}\right)$-2-(Pyridin-2-yl)cyclopropanecarboxylic Acid [(2S,3S)-2-Amino-3-methylpentyl]-(4'-methylbiphenyl-4-yl)amide Dihydrochloride (4b). The procedure for 1 was followed using 20 mg $(0.038 \mathrm{mmol})$ of 15 c and 1 mL of 4 M HCl in dioxane to give 18 mg (95%) of $4 \mathbf{b}$ as a $1: 1$ diastereomeric mixture: ${ }^{1} \mathrm{H}$ NMR (300 MHz ; $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.68-8.55(\mathrm{~m}, 1 \mathrm{H}), 8.42-8.30(\mathrm{~m}, 1 \mathrm{H}), 7.88-7.40(\mathrm{~m}$, $8 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 2 \mathrm{H}), 4.50-4.40(\mathrm{~m}, 0.5 \mathrm{H}), 4.40-4.28(\mathrm{~m}, 0.5 \mathrm{H})$, $3.88-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.48-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.12-3.05(\mathrm{~m}, 0.5 \mathrm{H}), 3.05-$ $2.96(\mathrm{~m}, 0.5 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.88(\mathrm{~m}, 1 \mathrm{H})$, $1.87-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.15(\mathrm{~m}, 2 \mathrm{H}), 1.06-0.80(\mathrm{~m}, 6 \mathrm{H})$; HRMS (ESI) calcd. for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 428.2696. Found: 428.2701.
(1R*,2R*)-2-(Pyridin-2-yl)cyclopropanecarboxylic Acid [(2S,3S)-2-Amino-3-methylpentyl]-(4'-ethylbiphenyl-4-yl)amide Dihydrochloride (4c). The procedure for 1 was followed using $20 \mathrm{mg}(0.037 \mathrm{mmol})$ of $\mathbf{1 5 d}$ and 1 mL of 4 M HCl in dioxane to give $18 \mathrm{mg}(95 \%)$ of 4 c as a $1: 1$ diastereomeric mixture: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.70-$ $8.58(\mathrm{~m}, 1 \mathrm{H}), 8.45-8.30(\mathrm{~m}, 1 \mathrm{H}), 7.88-7.45(\mathrm{~m}, 8 \mathrm{H}), 7.32-7.20(\mathrm{~m}$, $2 \mathrm{H}), 4.52-4.40(\mathrm{~m}, 0.5 \mathrm{H}), 4.38-4.28(\mathrm{~m}, 0.5 \mathrm{H}), 3.88-3.56(\mathrm{~m}, 1 \mathrm{H})$, $3.48-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.15-3.05(\mathrm{~m}, 0.5 \mathrm{H}), 3.05-2.95(\mathrm{~m}, 0.5 \mathrm{H})$, $2.80-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.87-$ $1.60(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.10(\mathrm{~m}, 5 \mathrm{H}), 1.08-0.80(\mathrm{~m}, 6 \mathrm{H})$; HRMS (ESI) calcd. for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 442.2853 . Found: 442.2867.
(1R*,2R*)-2-(Pyridin-2-yl) cyclopropanecarboxylic Acid [(2S,3S)-2-Amino-3-methylpentyl]-(4'-isobutylbiphenyl-4-yl)amide Dihydrochloride (4d). The procedure for 1 was followed using 20 mg (0.035 mmol) of 15 e and 1 mL of 4 M HCl in dioxane to give 17 mg (90%) of 4 d as a $1: 1$ diastereomeric mixture: ${ }^{1} \mathrm{H}$ NMR (300 MHz ; $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.68-8.58(\mathrm{~m}, 1 \mathrm{H}), 8.40-8.28(\mathrm{~m}, 1 \mathrm{H}), 7.92-7.43(\mathrm{~m}$, $8 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 2 \mathrm{H}), 4.50-4.40(\mathrm{~m}, 0.5 \mathrm{H}), 4.38-4.25(\mathrm{~m}, 0.5 \mathrm{H})$, $3.88-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.13-3.05(\mathrm{~m}, 0.5 \mathrm{H}), 3.05-$ $2.90(\mathrm{~m}, 0.5 \mathrm{H}), 2.51(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.25-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.05-$ $1.60(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.20(\mathrm{~m}, 2 \mathrm{H}), 1.10-0.76(\mathrm{~m}, 12 \mathrm{H})$; HRMS (ESI) calcd. for $\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 470.3166$. Found: 470.3178.
(1R*,2R*)-2-(Pyridin-2-yl)cyclopropanecarboxylic Acid [(2S,3S)-2-Amino-3-methylpentyl]-(4'-cyclohexylbiphenyl-4-yl)amide Dihydrochloride (4e). The procedure for 1 was followed using $20 \mathrm{mg}(0.034$ mmol) of $\mathbf{1 5 f}$ and 1 mL of 4 M HCl in dioxane to give 19 mg (98%) of 4 e as a $1: 1$ diastereomeric mixture: ${ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ 8.55-8.40 (m, 1H), 8.15-8.00 (m, 1H), 7.75-7.40 (m, 8H), 7.35$7.20(\mathrm{~m}, 2 \mathrm{H}), 4.48-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.35(\mathrm{~m}$, $1 \mathrm{H}), 2.98-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.00(\mathrm{~m}, 1 \mathrm{H})$, $1.98-1.70(\mathrm{~m}, 7 \mathrm{H}), 1.66-1.10(\mathrm{~m}, 8 \mathrm{H}), 1.05-0.78(\mathrm{~m}, 6 \mathrm{H})$; HRMS (ESI) calcd. for $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 496.3322. Found: 496.3323.
(1R*,2R*)-2-(Pyridin-2-yl)cyclopropanecarboxylic Acid [(2S,3S)-2-Amino-3-methylpentyl]-(4'-trifluoromethylbiphenyl-4-yl)amide Dihydrochloride (4f). The procedure for 1 was followed using 20 mg (0.034 mmol) of 15 g and 1 mL of 4 N HCl in dioxane to give 18 mg (95\%) of $4 \mathbf{f}$ as a $1: 1$ diastereomeric mixture: ${ }^{1} \mathrm{H}$ NMR (300 MHz ; $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.70-8.58(\mathrm{~m}, 1 \mathrm{H}), 8.42-8.30(\mathrm{~m}, 1 \mathrm{H}), 7.90-7.50(\mathrm{~m}$, $10 \mathrm{H}), 4.55-4.40(\mathrm{~m}, 0.5 \mathrm{H}), 4.40-4.26(\mathrm{~m}, 0.5 \mathrm{H}), 3.90-3.60(\mathrm{~m}$, $1 \mathrm{H}), 3.50-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.15-3.05(\mathrm{~m}, 0.5 \mathrm{H}), 3.05-2.92(\mathrm{~m}, 0.5 \mathrm{H})$, $2.25-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.50-$ $1.15(\mathrm{~m}, 2 \mathrm{H}), 1.08-0.80(\mathrm{~m}, 6 \mathrm{H})$; HRMS (ESI) calcd. for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 482.2414. Found: 482.2416.
(1R*,2R*)-2-(Pyridin-2-yl)cyclopropanecarboxylic Acid [(2S,3S)-2-Amino-3-methylpentyl]-(4'-fluorobiphenyl-4-yl)amide Dihydrochloride (4g). The procedure for 1 was followed using 20 mg (0.038 mmol) of $\mathbf{1 5 h}$ and 1 mL of 4 M HCl in dioxane to give 18 mg (94\%) of 4 g as a $1: 1$ diastereomeric mixture: ${ }^{1} \mathrm{H}$ NMR (300 MHz ; $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.70-8.58(\mathrm{~m}, 1 \mathrm{H}), 8.45-8.35(\mathrm{~m}, 1 \mathrm{H}), 7.90-7.50(\mathrm{~m}$, $8 \mathrm{H}), 7.25-7.10(\mathrm{~m}, 2 \mathrm{H}), 4.52-4.40(\mathrm{~m}, 0.5 \mathrm{H}), 4.40-4.25(\mathrm{~m}, 0.5 \mathrm{H})$, $3.90-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.16-3.06(\mathrm{~m}, 0.5 \mathrm{H}), 3.05-$ $2.92(\mathrm{~m}, 0.5 \mathrm{H}), 2.25-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.60$ $(\mathrm{m}, 2 \mathrm{H}), 1.50-1.18(\mathrm{~m}, 2 \mathrm{H}), 1.10-0.80(\mathrm{~m}, 6 \mathrm{H})$; HRMS (ESI) calcd. for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{FN}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 432.2446. Found: 432.2453.
(1R*,2R*)-2-(Pyridin-2-yl)cyclopropanecarboxylic Acid [(2S,3S)-2-Amino-3-methylpentyl]-(4'-chlorobiphenyl-4-yl)amide Dihydrochloride (4h). The procedure for 1 was followed using 20 mg (0.036 mmol) of $\mathbf{1 5 i}$ and 1 mL of 4 M HCl in dioxane to give 18 mg (96%) of 4 h as a $1: 1$ diastereomeric mixture: ${ }^{1} \mathrm{H}$ NMR (300 MHz ; $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.72-8.58(\mathrm{~m}, 1 \mathrm{H}), 8.45-8.35(\mathrm{~m}, 1 \mathrm{H}), 7.90-7.55(\mathrm{~m}$, $8 \mathrm{H}), 7.55-7.40(\mathrm{~m}, 2 \mathrm{H}), 4.55-4.42(\mathrm{~m}, 0.5 \mathrm{H}), 4.40-4.25(\mathrm{~m}, 0.5 \mathrm{H})$, $3.90-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.18-3.07(\mathrm{~m}, 0.5 \mathrm{H}), 3.06-$ $2.96(\mathrm{~m}, 0.5 \mathrm{H}), 2.25-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.68$ $(\mathrm{m}, 2 \mathrm{H}), 1.58-1.12(\mathrm{~m}, 2 \mathrm{H}), 1.10-0.80(\mathrm{~m}, 6 \mathrm{H})$; HRMS (ESI) calcd. for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{ClN}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 448.2150$. Found: 448.2162 .
(1R*,2R*)-2-(Pyridin-2-yl)cyclopropanecarboxylic Acid [(2S,3S)-2-Amino-3-methylpentyl]-(4'-acetylbiphenyl-4-yl)amide Dihydrochloride (4i). The procedure for 1 was followed using 20 mg (0.036 mmol) of $\mathbf{1 5 j}$ and 1 mL of 4 M HCl in dioxane to give 17 mg (90\%) of $4 \mathbf{i}$ as a $1: 1$ diastereomeric mixture: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ 8.35-8.22 (m, 1H), 8.05-7.92 (m, 2H), 7.90-7.75 (m, 1H), 7.72$7.60(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.22(\mathrm{~m}, 2 \mathrm{H}), 4.38-4.16(\mathrm{~m}$, $1 \mathrm{H}), 3.80-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.20(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.60(\mathrm{~m}, 1 \mathrm{H})$, $2.54(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.10(\mathrm{~m}$, $3 \mathrm{H}), 0.95-0.70(\mathrm{~m}, 6 \mathrm{H})$; HRMS (ESI) calcd. for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+$ $\mathrm{H}]^{+}$: 456.2646. Found: 456.2658.
tert-Butyl (1R,2R)-2-(Pyridin-2-yl)cyclopropanecarboxylate ((1R,2R)-9). An oven-dried Schlenk tube, that was previously charged with chiral porphyrin catalyst $\left[\mathrm{Co}\left(3,5-\mathrm{Di}^{t} \mathrm{Bu}-\mathrm{Ch} \mathrm{Cl}^{2} \text { Phyrin) }\right]^{11}(3.4 \mathrm{mg}\right.$, 0.0025 mmol) and DMAP ($15 \mathrm{mg}, 0.13 \mathrm{mmol}$), was evacuated and backfilled with nitrogen gas. Toluene (0.5 mL) and 2-vinylpyridine (8) ($26 \mathrm{mg}, 0.25 \mathrm{mmol}$) were added, followed by the remaining solvent (total 1.0 mL). The Schlenk tube was then placed in a $-20^{\circ} \mathrm{C}$ cooling bath, and tert-butyl diazoacetate ($41 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$) was added dropwise. After addition, the tube was purged with nitrogen for 2 min and the mixture was stirred at $-20^{\circ} \mathrm{C}$ for 12 h , then at $0^{\circ} \mathrm{C}$ for 12 h . After warming to room temperature, the reaction was continued for another 24 h . Flash column chromatography of the crude mixture on silica gel using 10% EtOAc in hexanes afforded $(1 R, 2 R)-9(35 \mathrm{mg}$, $64 \%)$ as a colorless oil. Assignment of the absolute configuration was made based on the analogy to similar compounds with known absolute configurations synthesized using the same chiral catalyst. ${ }^{11}$ The enantiomeric excess (97% ee) was determined by HPLC (ChiralPak $\mathrm{AD}-\mathrm{H}$ column; 0.5% isopropanol/hexanes; flow rate $0.8 \mathrm{~mL} / \mathrm{min}$; detection 254 nm ; retention time 10.6 min).
(1R,2R)-2-(Pyridin-2-yl)cyclopropanecarboxylic Acid Hydrochloride ((1R,2R)-10). To a solution of $(1 R, 2 R)-9(110 \mathrm{mg}, 0.50 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added 4 M HCl in dioxane $(2 \mathrm{~mL})$, and the reaction was stirred at room temperature for 5 h . The solvent was removed under reduced procedure. The residue was triturated with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ to afford $(1 R, 2 R)-10(95 \mathrm{mg}, 95 \%)$ as a white solid: mp $155-157{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{23}-206.8^{\circ}$ (c 0.5, $\left.\mathrm{CH}_{3} \mathrm{OH}\right)$.
tert-Butyl [(2S,3S)-1-\{4-Bromophenyl-[(1R,2R)-2-(pyridin-2-yl)-cyclopropanecarbonyl]amino\}-3-methylpentan-2-yl]carbamate ($(1 R, 2 R)-14)$. The procedure for 14 was followed using $108 \mathrm{mg}(0.29$ $\mathrm{mmol})$ of 13 and $70 \mathrm{mg}(0.35 \mathrm{mmol})$ of $(1 R, 2 R)-10$ to give 97 mg (65%) of $(1 R, 2 R)-14$ as a white foam: $[\alpha]^{23}{ }_{\mathrm{D}}-21.0^{\circ}$ (c 0.58 , $\left.\mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 8.30(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.56-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.06(\mathrm{~m}, 3 \mathrm{H}), 7.06-6.98(\mathrm{~m}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J$ $=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{dd}$, $J=12.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{ddd}, J=9.0,6.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.86$ $(\mathrm{m}, 1 \mathrm{H}), 1.61-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.41(\mathrm{~m}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.15-$ $1.02(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 173.2,159.3,156.4,149.4,141.3,136.0$, 133.1, 130.1, 122.7, 121.9, 121.2, 79.0, 54.0, 50.3, 38.3, 28.6, 27.5, 25.3, 24.7, 18.3, 15.2, 11.9; MS (ESI) $m / z 516.5[\mathrm{M}+\mathrm{H}]^{+}\left({ }^{79} \mathrm{Br}\right), 518.4[\mathrm{M}$ $+\mathrm{H}]^{+}\left({ }^{81} \mathrm{Br}\right)$. The diastereomeric excess $(>97 \%$ de) was determined by HPLC (ChiralPak IA column; $5 \% \mathrm{EtOH} /$ hexanes; flow rate $1 \mathrm{~mL} /$ min ; detection 220 nm ; retention time 9.1 min).
tert-Butyl [(2S,3S)-1-\{4-Bromophenyl-[(1S,2S)-2-(pyridin-2-yl)-cyclopropanecarbonyl]amino\}-3-methylpentan-2-yl]carbamate ((1S,2S)-14). The diastereomeric mixture $14(350 \mathrm{mg})$ was separated to $(1 R, 2 R)-14(140 \mathrm{mg})$ and $(1 S, 2 S)-14(137 \mathrm{mg})$ by preparative HPLC using ChiralPak IA column: mobile phase, $5 \% \mathrm{EtOH} /$ hexanes; flow rate, $5 \mathrm{~mL} / \mathrm{min}$; detection 220 nm . The diastereomeric excess
(de) of both of separated compounds was determined to be $>99 \%$ by HPLC (ChiralPak IA column; $5 \% \mathrm{EtOH} /$ hexanes; flow rate $1 \mathrm{~mL} /$ min ; detection 220 nm ; retention time, $(1 R, 2 R)-14: 9.1 \mathrm{~min},(1 S, 2 S)-$ 14: 11.5 min). ($1 S, 2 S$)-14: White foam; $[\alpha]^{23}{ }_{\mathrm{D}}+52.7^{\circ}$ (c 0.55 , $\left.\mathrm{CH}_{3} \mathrm{OH}\right)$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 8.30(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.52(\mathrm{td}, J=9.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.12-6.99(\mathrm{~m}, 3 \mathrm{H}), 4.96$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.38$ (dd, $J=$ $15.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=15.0,3.0 \mathrm{~Hz}$, 1 H), 2.52 (ddd, $J=9.0,6.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.70-$ $1.63(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.38(\mathrm{~m}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.14-1.02(\mathrm{~m}, 1 \mathrm{H})$, $0.87(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz ; CDCl_{3}) δ 173.1, 159.2, 156.2, 149.5, 141.1, 135.9, 132.9, 130.1, 122.5, 121.8, 121.2, 78.9, 53.8, 50.0, 38.2, 28.6, 28.1, 25.3, 24.7, 17.7, 15.2, 11.9; MS (ESI) $m / z 516.5[\mathrm{M}+\mathrm{H}]^{+}\left({ }^{79} \mathrm{Br}\right)$, $518.4[\mathrm{M}+\mathrm{H}]^{+}\left({ }^{81} \mathrm{Br}\right)$.
(1R,2R)-2-(Pyridin-2-yl)cyclopropanecarboxylic Acid [(2S,3S)-2-Amino-3-methylpentyl]-(4'-propylbiphenyl-4-yl)amide Dihydrochloride (2). The procedure for 15a was followed using 120 mg (0.23 mmol) of $(1 R, 2 R)-\mathbf{1 4}$, followed by deprotection of the Boc protecting group with 4 M HCl in dioxane, to give 97 mg (80% over two steps) of 2 as a white solid: $\mathrm{mp} 125^{\circ} \mathrm{C}$ (fusion); $[\alpha]^{23}{ }_{\mathrm{D}}+6.3^{\circ}(c 1$, $\mathrm{CH}_{3} \mathrm{OH}$); ${ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.58(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.28(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.52(\mathrm{~m}, 6 \mathrm{H}), 7.51(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.27(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.29(\mathrm{dd}, J=15.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.01-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.22-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.75(\mathrm{M}, 1 \mathrm{H})$, $1.75-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.50-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.15(\mathrm{~m}, 1 \mathrm{H}), 1.05-$ $0.90(\mathrm{~m}, 6 \mathrm{H}), 0.86(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}$) $\delta 173.4,157.6,146.6,143.9,143.3,142.9,141.6,138.2,130.2,129.8$, 129.5, 127.9, 125.5, 125.1, 56.6, 50.9, 38.7, 37.2, 27.4, 26.5, 25.7, 25.2, 18.1, 14.2, 14.2, 11.7; HRMS (ESI) calcd. for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 456.3009. Found: 456.3023. The diastereomeric excess ($>99 \%$ de) was determined by HPLC (XTerra MS C-18 column; gradient 40-60\% of ($0.1 \% \mathrm{TFA} / \mathrm{MeCN}) /(0.1 \% \mathrm{TFA} /$ water $)$; flow rate $1 \mathrm{~mL} / \mathrm{min}$; detection 254 nm ; retention time 5.66 min).
(1S,2S)-2-(Pyridin-2-yl)cyclopropanecarboxylic Acid [(2S,3S)-2-Amino-3-methylpentyl]-(4'-propylbiphenyl-4-yl)amide Dihydrochloride (3). The procedure for 15a was followed using 120 mg $(0.23 \mathrm{mmol})$ of $(1 S, 2 S)-14$, followed by deprotection of the Boc protecting group with 4 M HCl in dioxane, to give 98 mg (81% over two steps) of 3 as a white solid: mp $122^{\circ} \mathrm{C}$ (fusion); $[\alpha]^{23}{ }_{\mathrm{D}}-91.3^{\circ}(c$ 1, $\mathrm{CH}_{3} \mathrm{OH}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.62(\mathrm{br} \mathrm{d}, J=3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.31(\mathrm{brt}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.58(\mathrm{~m}, 6 \mathrm{H}), 7.49(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{dd}, J=15.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.68$ (d, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.46-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.12-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.25-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.60$ $(\mathrm{m}, 4 \mathrm{H}), 1.45-1.15(\mathrm{~m}, 2 \mathrm{H}), 1.10-0.90(\mathrm{~m}, 6 \mathrm{H}), 0.82(\mathrm{t}, J=6.0 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}$) δ 173.3, 157.5, 146.7, 143.9, 143.3, 142.9, 141.4, 138.2, 130.2, 130.0, 129.4, 127.9, 125.6, 125.3, $56.5,50.6,38.7,37.4,27.0,26.7,25.7,25.6,17.2,14.1,11.8$; HRMS (ESI) calcd. for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 456.3009$. Found: 456.3018 . The diastereomeric excess ($>99 \%$ de) was determined by HPLC (XTerra MS C-18 column; gradient $40-60 \%$ of ($0.1 \% \mathrm{TFA} / \mathrm{MeCN}$)/ ($0.1 \% \mathrm{TFA} /$ water); flow rate $1 \mathrm{~mL} / \mathrm{min}$; detection 254 nm ; retention time 6.35 min$)$.
tert-Butyl \{2-[(4-Bromophenyl)amino]ethyl\}carbamate (18a). The procedure for 13 was followed using $1.03 \mathrm{~g}(5.96 \mathrm{mmol})$ of 11 and $0.95 \mathrm{~g}(5.96 \mathrm{mmol})$ of N -Boc-2-aminoacetaldehyde (17a) to give $1.38 \mathrm{~g}(50 \%)$ of 18 a as a yellow oily residue: ${ }^{1} \mathrm{H}$ NMR (300 MHz ; $\left.\mathrm{CDCl}_{3}\right) \delta 7.23(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.48(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.80(\mathrm{br} \mathrm{s}$, 1 H), $4.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.41-3.30(\mathrm{~m}, 2 \mathrm{H}), 3.30-3.26(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}$, 9H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) δ 156.5, 147.1, 131.9, 114.2, 108.8, 79.6, 44.4, 40.0, 28.4; MS (ESI) m/z $315.1[\mathrm{M}+\mathrm{H}]^{+}\left({ }^{79} \mathrm{Br}\right), 317.2[\mathrm{M}$ $+\mathrm{H}]^{+}\left({ }^{81} \mathrm{Br}\right)$.
tert-Butyl \{(2S)-1-[(4-Bromophenyl)amino]propan-2-yl\}carbamate (18b). The procedure for 13 was followed using 247 mg (1.44 mmol) of 11 and 250 mg (1.44 mmol) of N -Boc-L-alaninal (17b) to give $410 \mathrm{mg}(86 \%)$ of $\mathbf{1 8 b}$ as a white solid: $\mathrm{mp} 115-117^{\circ} \mathrm{C}$; $[\alpha]^{23}{ }_{\mathrm{D}}+3.1^{\circ}\left(c 0.52, \mathrm{CH}_{3} \mathrm{OH}\right)$; ${ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 7.23$ (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.48(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.12(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 4.00-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.18-2.98(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.21(\mathrm{~d}$,
$J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 156.0,147.3,131.9$, 114.1, 108.7, 79.7, 50.6, 46.3, 28.4, 19.0; MS (ESI) $\mathrm{m} / \mathrm{z} 329.3$ [M + $\mathrm{H}]^{+}\left({ }^{79} \mathrm{Br}\right), 331.2[\mathrm{M}+\mathrm{H}]^{+}\left({ }^{81} \mathrm{Br}\right)$.
tert-Butyl \{(2S)-1-[(4'-Propylbiphenyl-4-yl)amino]-3-methylbu-tan-2-yl\}carbamate (18c). The procedure for 13 was followed using $150 \mathrm{mg}(0.71 \mathrm{mmol})$ of $4-\left(4^{\prime}\right.$-propylphenyl) aniline (16) and 143 mg (0.71 mmol) of aldehyde 17 c , prepared by oxidation of N -Boc-L-valinol, to give $185 \mathrm{mg}(66 \%)$ of 18 c as a white solid: $\mathrm{mp} 83-85$ ${ }^{\circ} \mathrm{C} ;[\alpha]^{23}{ }_{\mathrm{D}}+22.2^{\circ}\left(c 0.54, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) δ $7.45(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, 2H), $6.65(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.51(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 3.80-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.35-3.20(\mathrm{~m}, 1 \mathrm{H}), 3.12-3.00(\mathrm{~m}, 1 \mathrm{H})$, $2.60(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.95-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.45$ $(\mathrm{s}, 9 \mathrm{H}), 1.05-0.90(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 156.8$, 147.8, 140.5, 138.8, 130.3, 128.9, 127.8, 126.2, 113.0, 79.5, 55.7, 47.1, 37.8, $30.6,28.5,24.7,19.6,18.2,14.0$; MS (ESI) $m / z 397.5[\mathrm{M}+\mathrm{H}]^{+}$.
tert-Butyl \{(2S)-1-[(4'-Propylbiphenyl-4-yl)amino]-4-methylpen-tan-2-y/jcarbamate (18d). The procedure for 13 was followed using $90 \mathrm{mg}(0.43 \mathrm{mmol})$ of 16 and $93 \mathrm{mg}(0.43 \mathrm{mmol})$ of aldehyde 17 d , prepared by oxidation of N-Boc-L-leucinol, to give 120 mg (68%) of 18 d as a white solid: $\mathrm{mp} 98-100{ }^{\circ} \mathrm{C}$; $[\alpha]^{23} \mathrm{D}+2.4^{\circ}$ (c 0.54 , $\mathrm{CH}_{3} \mathrm{OH}$) ; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 7.45(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.42(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $2 \mathrm{H}), 4.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.21(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.00-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.32-3.20$ $(\mathrm{m}, 1 \mathrm{H}), 3.12-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.80-1.60(\mathrm{~m}$, $3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.43-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.05-0.90(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 156.3,147.7,140.5,138.7,130.2,128.7,127.8$, 126.1, 112.9, 79.5, 49.9, 49.0, 42.5, 37.7, 28.4, 25.0, 24.6, 23.1, 22.1, 13.9; MS (ESI) $m / z 411.5[\mathrm{M}+\mathrm{H}]^{+}$.
tert-Butyl \{(2S)-1-[(4-Bromophenyl)amino]-3-phenylpropan-2$y \mid\}$ carbamate (18e). The procedure for 13 was followed using 172 $\mathrm{mg}(1.00 \mathrm{mmol})$ of 11 and $250 \mathrm{mg}(1.00 \mathrm{mmol})$ of N-Boc-Lphenylalaninal ($\mathbf{1 7 e}$) to give $350 \mathrm{mg}(86 \%)$ of 18 e as a white solid: mp $124-126^{\circ} \mathrm{C} ;[\alpha]^{23}{ }_{\mathrm{D}}+12.2^{\circ}\left(c 0.53, \mathrm{CH}_{3} \mathrm{OH}\right)$; ${ }^{1} \mathrm{H}$ NMR (300 MHz ; $\left.\mathrm{CDCl}_{3}\right) \delta 7.36-7.15(\mathrm{~m}, 7 \mathrm{H}), 6.43(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.51(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 4.15-3.98(\mathrm{~m}, 2 \mathrm{H}), 3.26-3.15(\mathrm{~m}, 1 \mathrm{H}), 3.10-2.92(\mathrm{~m}, 1 \mathrm{H})$, 2.96-1.80 (m, 2H), $1.41(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta$ 156.0, 147.1, 137.3, 131.9, 129.2, 128.7, 126.8, 114.3, 109.0, 79.8, 51.4, 47.9, 39.2, 28.3; MS (ESI) $m / z 405.3[\mathrm{M}+\mathrm{H}]^{+}\left({ }^{79} \mathrm{Br}\right), 407.3[\mathrm{M}+$ $\mathrm{H}]^{+}\left({ }^{81} \mathrm{Br}\right)$.
tert-Butyl (2-\{4-Bromophenyl-[(1R*,2R*)-2-(pyridin-2-yl)cyclopropanecarbonylJamino\}ethyl)carbamate (19a). The procedure for $\mathbf{1 4}$ was followed using $180 \mathrm{mg}(0.57 \mathrm{mmol})$ of $\mathbf{1 8 a}$ and 136 $\mathrm{mg}(0.68 \mathrm{mmol})$ of racemic 10 to give $140 \mathrm{mg}(53 \%)$ of 19 a as a yellow oil: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 8.31(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.60-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.00(\mathrm{~m}, 4 \mathrm{H}), 5.05$ (br s, 1 H), 3.92-3.80 (m, 2H), 3.40-3.25 (m, 2H), 2.68-2.58 (m, $1 \mathrm{H}), 2.00-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}), 1.20-1.05$ $(\mathrm{m}, 1 \mathrm{H})$; MS (ESI) $m / z 460.3[\mathrm{M}+\mathrm{H}]^{+}\left({ }^{79} \mathrm{Br}\right), 462.1[\mathrm{M}+\mathrm{H}]^{+}$ $\left({ }^{81} \mathrm{Br}\right)$. This product contained impurity as judged by ${ }^{1} \mathrm{H}$ NMR analysis, which was used in the next step without further purification.
tert-Butyl [(2S)-1-\{4-Bromophenyl-[(1R*,2R*)-2-(pyridin-2-yl)-cyclopropanecarbonyl]amino\}propan-2-yl]carbamate (19b). The procedure for $\mathbf{1 4}$ was followed using $99 \mathrm{mg}(0.30 \mathrm{mmol})$ of $\mathbf{1 8 b}$ and $72 \mathrm{mg}(0.36 \mathrm{mmol})$ of racemic $\mathbf{1 0}$ to give $85 \mathrm{mg}(60 \%)$ of $\mathbf{1 9 b}$ as a $1: 1$ diastereomeric mixture: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~d}$, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.20-6.95(\mathrm{~m}, 4 \mathrm{H}), 4.98(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.32-3.18(\mathrm{~m}$, $2 \mathrm{H}), 2.68-2.60(\mathrm{~m}, 0.5 \mathrm{H}), 2.60-2.46(\mathrm{~m}, 0.5 \mathrm{H}), 1.95-1.80(\mathrm{~m}, 1 \mathrm{H})$, $1.68-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.43$ and $1.41(2 \mathrm{~s}, 9 \mathrm{H}), 1.10(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H})$; MS (ESI) $m / z 474.4[\mathrm{M}+\mathrm{H}]^{+}\left({ }^{79} \mathrm{Br}\right)$, $476.5[\mathrm{M}+\mathrm{H}]^{+}\left({ }^{81} \mathrm{Br}\right)$.
tert-Butyl (2S)-1-\{(4'-Propylbiphenyl-4-yl)-[(1R*,2R*)-2-(pyridin-2-yl)cyclopropanecarbonyl]amino\}-3-methylbutan-2-yl\}carbamate (19c). The procedure for 14 was followed using $120 \mathrm{mg}(0.34 \mathrm{mmol})$ of $\mathbf{1 8 c}$ and $81 \mathrm{mg}(0.40 \mathrm{mmol})$ of racemic 10 to give $110 \mathrm{mg}(60 \%)$ of 19 c as a $1: 1$ diastereomeric mixture: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.26-8.18(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.30-7.21(\mathrm{~m}, 5 \mathrm{H}), 6.98-$ $6.90(\mathrm{~m}, 1 \mathrm{H}), 5.08-4.92(\mathrm{~m}, 1 \mathrm{H}), 4.45-4.32(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.60(\mathrm{~m}$, $1 \mathrm{H}), 3.25-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.48(\mathrm{~m}, 3 \mathrm{H}), 2.08-1.92(\mathrm{~m}, 1 \mathrm{H})$,
$1.78-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.47$ and $1.43(2 \mathrm{~s}, 9 \mathrm{H}), 1.00-0.80(\mathrm{~m}, 9 \mathrm{H}) ; \mathrm{MS}$ (ESI) $m / z 542.6[\mathrm{M}+\mathrm{H}]^{+}$.
tert-Butyl (2S)-1-\{(4'-Propylbiphenyl-4-yl)-[(1R*,2R*)-2-(pyridin-2-yl)cyclopropanecarbonyl]amino\}-4-methylpentan-2-yl\}carbamate (19d). The procedure for 14 was followed using 90 mg $(0.22 \mathrm{mmol})$ of $\mathbf{1 8 d}$ and $53 \mathrm{mg}(0.26 \mathrm{mmol})$ of racemic $\mathbf{1 0}$ to give 65 $\mathrm{mg}(53 \%)$ of 19 d as a $1: 1$ diastereomeric mixture: ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 8.28-8.20(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.32-7.12$ $(\mathrm{m}, 5 \mathrm{H}), 7.00-6.90(\mathrm{~m}, 1 \mathrm{H}), 4.90-4.80(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.12(\mathrm{~m}, 1 \mathrm{H})$, $4.00-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.20(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.50(\mathrm{~m}, 3 \mathrm{H}), 2.10-$ $1.90(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.45$ and $1.41(2 \mathrm{~s}, 9 \mathrm{H}), 1.40-1.12$ (m, 2H), 1.02-0.80 (m, 9H); MS (ESI) $m / z 556.8[\mathrm{M}+\mathrm{H}]^{+}$.
tert-Butyl [(2S)-1-\{4-Bromophenyl-[(1R*,2R*)-2-(pyridin-2-yl)-cyclopropanecarbonyl]amino\}-3-phenylpropan-2-yl]carbamate (19e). The procedure for 14 was followed using $99 \mathrm{mg}(0.30 \mathrm{mmol})$ of 18 e and $72 \mathrm{mg}(0.36 \mathrm{mmol})$ of racemic 10 to give $85 \mathrm{mg}(60 \%)$ of 19 e as a $1: 1$ diastereomeric mixture: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta$ $8.29(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.30-6.90(\mathrm{~m}, 9 \mathrm{H})$, 5.05-4.92 (m, 1H), 4.28-3.90 (m, 2H), 3.30-3.20 (m, 1H), 2.88$2.48(\mathrm{~m}, 3 \mathrm{H}), 1.95-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.39$ and 1.37 $(2 \mathrm{~s}, 9 \mathrm{H}), 1.32-1.20(\mathrm{~m}, 1 \mathrm{H})$; MS (ESI) $\mathrm{m} / \mathrm{z} 550.4[\mathrm{M}+\mathrm{H}]^{+}\left({ }^{79} \mathrm{Br}\right)$, $552.5[\mathrm{M}+\mathrm{H}]^{+}\left({ }^{81} \mathrm{Br}\right)$.
tert-Butyl (2-\{(4'-Propylbiphenyl-4-yl)-[(12*,2R*)-2-(pyridin-2-yl)cyclopropanecarbonyl]amino\}ethyl)carbamate (20a). The procedure for 15 a was followed using $140 \mathrm{mg}(0.30 \mathrm{mmol})$ of 19 a and 83 $\mathrm{mg}(0.47 \mathrm{mmol})$ of 4-propylphenylboronic acid to give $80 \mathrm{mg}(53 \%)$ of 20a: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 8.22(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.55-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.25-7.12(\mathrm{~m}, 5 \mathrm{H}), 7.00-6.90(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{br}$ s, 1 H$), 3.90(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.42-3.25(\mathrm{~m}, 3 \mathrm{H}), 2.62(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.10-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.35(\mathrm{~m}, 2 \mathrm{H})$, $1.42(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta$ 172.9, 159.4, 156.1, 149.3, 142.3, 141.0, 137.4, 135.8, 129.7, 129.0, 128.2, 128.1, 126.9, 122.4, 121.0, 79.1, 49.2, 39.7, 37.7, 28.4, 27.7, 24.9, 24.5, 17.7, 13.9; MS (ESI) $m / z 500.8[\mathrm{M}+\mathrm{H}]^{+}$.
tert-Butyl [(2S)-1-\{(4'-Propylbiphenyl-4-yl)-[(1R*,2R*)-2-(pyridin-2-yl)cyclopropanecarbonyl]amino\}propan-2-yl]carbamate (20b). The procedure for 15 a was followed using $50 \mathrm{mg}(0.11 \mathrm{mmol})$ of $\mathbf{1 9 b}$ and $29 \mathrm{mg}(0.16 \mathrm{mmol})$ of 4-propylphenylboronic acid to give 45 $\mathrm{mg}(80 \%)$ of 20 b as a $1: 1$ diastereomeric mixture: ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 8.28-8.18(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.28-7.10$ $(\mathrm{m}, 5 \mathrm{H}), 7.00-6.90(\mathrm{~m}, 1 \mathrm{H}), 5.20-5.06(\mathrm{~m}, 1 \mathrm{H}), 4.32-4.15(\mathrm{~m}, 1 \mathrm{H})$, $3.96-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.22(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.48(\mathrm{~m}, 3 \mathrm{H}), 2.06-$ $1.90(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.45$ and $1.43(2 \mathrm{~s}, 9 \mathrm{H}), 1.12(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$; MS (ESI) $\mathrm{m} / \mathrm{z} 514.6[\mathrm{M}+\mathrm{H}]^{+}$.
tert-Butyl [(2S)-1-\{(4'-Propylbiphenyl-4-yl)-[(1R*,2R*)-2-(pyridin-2-yl)cyclopropanecarbonyl]amino\}-3-phenylpropan-2-yl]carbamate (20e). The procedure for 15a was followed using 90 mg $(0.16 \mathrm{mmol})$ of 19 e and $44 \mathrm{mg}(0.24 \mathrm{mmol})$ of 4-propylphenylboronic acid to give $75 \mathrm{mg}(80 \%)$ of $\mathbf{2 0 e}$ as a $1: 1$ diastereomeric mixture: ${ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 8.26-8.15(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.38(\mathrm{~m}, 6 \mathrm{H})$, $7.28-7.05(\mathrm{~m}, 9 \mathrm{H}), 7.00-6.90(\mathrm{~m}, 1 \mathrm{H}), 5.16-5.05(\mathrm{~m}, 1 \mathrm{H}), 4.35-$ $4.18(\mathrm{~m}, 1 \mathrm{H}), 4.15-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.22(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.45(\mathrm{~m}$, $5 \mathrm{H}), 2.05-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.50(\mathrm{~m}, 3 \mathrm{H}), 1.41$ and $1.40(2 \mathrm{~s}, 9 \mathrm{H})$, $1.30-1.20(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$; MS (ESI) $\mathrm{m} / \mathrm{z} 590.8[\mathrm{M}$ $+\mathrm{H}]^{+}$.
(1R*,2R*)-2-(Pyridin-2-yl)cyclopropanecarboxylic Acid [2-Amino-ethyl-(4'-propylbiphenyl-4-yl)amide Dihydrochloride (5a). The procedure for 1 was followed using $60 \mathrm{mg}(0.12 \mathrm{mmol})$ of 20a and 1 mL of 4 M HCl in dioxane to give 52 mg (92\%) of 5 a as a light yellow foam: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.56$ (br s, 1 H), 8.23 (br t, 1H), 7.50-7.63 (m, 3H), 7.62-7.43 (m, 5H), $7.27(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 2 \mathrm{H}), 4.25-3.98(\mathrm{~m}, 2 \mathrm{H}), 3.22-3.10(\mathrm{~m}, 2 \mathrm{H}), 3.00-2.78(\mathrm{~m}, 1 \mathrm{H})$, $2.63(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.18-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.94-182(\mathrm{~m}, 1 \mathrm{H})$, $1.72-1.60(\mathrm{~m}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz ; $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 173.1,157.9,146.2,144.1,143.9,143.0,141.4,138.2$, 130.2, 130.0, 129.6, 128.0, 125.5, 125.3, 39.9, 38.7, 27.1, 25.8, 25.7, 18.0, 14.1; HRMS (ESI) calcd. for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 400.2383$. Found: 400.2388.
(1R*,2R*)-2-(Pyridin-2-yl)cyclopropanecarboxylic Acid [(2S)-2-Aminopropyl-(4'-propylbiphenyl-4-yl)amide Dihydrochloride (5b). The procedure for $\mathbf{1}$ was followed using $40 \mathrm{mg}(0.078 \mathrm{mmol})$ of $\mathbf{2 0 b}$
and 1 mL of 4 M HCl in dioxane to give $37 \mathrm{mg}(98 \%)$ of $\mathbf{5 b}$ as a $1: 1$ diastereomeric mixture: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.70-8.58$ $(\mathrm{m}, 1 \mathrm{H}), 8.40-8.28(\mathrm{~m}, 1 \mathrm{H}), 7.85-7.40(\mathrm{~m}, 8 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 2 \mathrm{H})$, $4.42-4.26(\mathrm{~m}, 0.5 \mathrm{H}), 4.25-4.10(\mathrm{~m}, 0.5 \mathrm{H}), 3.95-3.82(\mathrm{~m}, 0.5 \mathrm{H})$, $3.78-3.48(\mathrm{~m}, 1.5 \mathrm{H}), 3.10-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.22-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.68(\mathrm{~m}, 3 \mathrm{H}), 1.42-$ $1.20(\mathrm{~m}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$; HRMS (ESI) calcd. for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 414.2540. Found: 414.2547.
(1R*,2R*)-2-(Pyridin-2-yl)cyclopropanecarboxylic Acid [(2S)-2-Amino-3-methylbutyl]-(4'-propylbiphenyl-4-yl)amide Dihydrochloride (5c). The procedure for 1 was followed using $60 \mathrm{mg}(0.11 \mathrm{mmol})$ of 19 c and 1 mL of 4 M HCl in dioxane to give 54 mg (95%) of 5 c as a $1: 1$ diastereomeric mixture: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.55-$ $8.38(\mathrm{~m}, 1 \mathrm{H}), 8.22-8.10(\mathrm{~m}, 1 \mathrm{H}), 7.70-7.30(\mathrm{~m}, 8 \mathrm{H}), 7.25-7.10(\mathrm{~m}$, $2 \mathrm{H}), 4.38-4.25(\mathrm{~m}, 0.5 \mathrm{H}), 4.24-4.10(\mathrm{~m}, 0.5 \mathrm{H}), 3.88-3.40(\mathrm{~m}, 2 \mathrm{H})$, $3.30-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.16-1.78(\mathrm{~m}, 3 \mathrm{H}), 1.68-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.00-0.75(\mathrm{~m}, 9 \mathrm{H})$; HRMS (ESI) calcd. for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 442.2853. Found: 442.2856.
(1R*,2R*)-2-(Pyridin-2-yl)cyclopropanecarboxylic Acid [(2S)-2-Amino-4-methylpentyl]-(4'-propylbiphenyl-4-yl)amide Dihydrochloride (5d). The procedure for 1 was followed using 50 mg (0.09 mmol) of 19 d and 1 mL of 4 M HCl in dioxane to give 46 mg (97\%) of $\mathbf{5 d}$ as a $1: 1$ diastereomeric mixture: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right)$ $\delta 8.60-8.50(\mathrm{~m}, 1 \mathrm{H}), 8.30-8.18(\mathrm{~m}, 1 \mathrm{H}), 7.78-7.40(\mathrm{~m}, 8 \mathrm{H}), 7.27$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.36-4.20(\mathrm{~m}, 0.5 \mathrm{H}), 4.20-4.18(\mathrm{~m}, 0.5 \mathrm{H}), 4.05-$ $3.90(\mathrm{~m}, 0.5 \mathrm{H}), 3.88-3.60(\mathrm{~m}, 1.5 \mathrm{H}), 3.52-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.10-2.90$ $(\mathrm{m}, 1 \mathrm{H}), 2.62(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.22-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.88(\mathrm{~m}$, $1 \mathrm{H}), 1.76-1.42(\mathrm{~m}, 5 \mathrm{H}), 1.02-0.75(\mathrm{~m}, 9 \mathrm{H})$; HRMS (ESI) calcd. for $\mathrm{C}_{30} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 456.3009. Found: 456.3017.
(1R*,2R*)-2-(Pyridin-2-yl)cyclopropanecarboxylic Acid [(2S)-2-Amino-3-phenylpropyl]-(4'-propylbiphenyl-4-yl)amide Dihydrochloride (5e). The procedure for 1 was followed using 70 mg (0.12 mmol) of 20 e and 1 mL of 4 M HCl in dioxane to give 65 mg (96\%) of 5 e as a $1: 1$ diastereomeric mixture: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.65-8.58(\mathrm{~m}, 1 \mathrm{H}), 8.40-8.26(\mathrm{~m}, 1 \mathrm{H}), 7.82-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.70-$ $7.36(\mathrm{~m}, 7 \mathrm{H}), 7.35-7.05(\mathrm{~m}, 7 \mathrm{H}), 4.45-4.30(\mathrm{~m}, 0.5 \mathrm{H}), 4.25-4.10$ $(\mathrm{m}, 0.5 \mathrm{H}), 4.00-3.86(\mathrm{~m}, 0.5 \mathrm{H}), 3.85-3.55(\mathrm{~m}, 1.5 \mathrm{H}), 3.16-2.88(\mathrm{~m}$, $3 \mathrm{H}), 2.69(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.22-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.88(\mathrm{~m}, 1 \mathrm{H})$, $1.76-1.58(\mathrm{~m}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$; HRMS (ESI) calcd. for $\mathrm{C}_{33} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 490.2853 . Found: 490.2859.
tert-Butyl [(2S,3S)-1-\{4-Bromophenyl-[(1R,2R)-2-phenyl-1-cyclopropanecarbonyl]amino\}-3-methylpentan-2-yl]carbmate (21a). A solution of (1R,2R)-2-phenyl-1-cyclopropanecarboxylic acid ${ }^{12}$ ($97 \mathrm{mg}, 0.6 \mathrm{mmol}$) in thionyl chloride $(3 \mathrm{~mL})$ was refluxed overnight. After cooling to room temperature, the mixture was concentrated under reduced pressure. The resulting residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(5 \mathrm{~mL})$ and treated with $13(150 \mathrm{mg}, 0.4 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.17 \mathrm{~mL}$, 1.2 mmol). The reaction mixture was stirred at room temperature overnight. Saturated $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ was added and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine $(3 \times 10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under reduced pressure. Flash column chromatography of the crude product on silica gel using $0-$ $25 \% \mathrm{EtOAc}$ in hexanes afforded 21a ($155 \mathrm{mg}, 75 \%$) as a white foam: $[\alpha]^{23}{ }_{\mathrm{D}}+35.2^{\circ}\left(c 0.52, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 7.49$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.10(\mathrm{~m}, 5 \mathrm{H}), 6.94(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.96$ $(\mathrm{d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=12.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.66(\mathrm{~m}$, $1 \mathrm{H}), 3.13(\mathrm{dd}, J=12.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.55(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.48$ $(\mathrm{m}, 4 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.16-1.10(\mathrm{~m}, 2 \mathrm{H}), 0.91-0.82(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 173.3,156.4,141.4,140.4,133.1,130.2$, 128.5, 126.4, 122.0, 79.0, 54.1, 50.3, 38.3, 28.6, 26.4, 25.4, 24.1, 17.8, 15.3, 11.9; MS (ESI) $m / z 515.4[\mathrm{M}+\mathrm{H}]^{+}\left({ }^{79} \mathrm{Br}\right), 517.4[\mathrm{M}+\mathrm{H}]^{+}$ $\left({ }^{81} \mathrm{Br}\right)$.
tert-Butyl [(2S,3S)-1-\{4-Bromophenyl-[(pyridin-2-yl)-methylcarbonyl]amino\}-3-methylpentan-2-yl]carbamate (21b). To a solution of $13(200 \mathrm{mg}, 0.54 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ at room temperature were added 2-pyridylacetic acid hydrochloride (113 mg , $0.65 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.23 \mathrm{~mL}, 1.6 \mathrm{mmol})$, and $\mathrm{HBTU}(246 \mathrm{mg}, 0.65$ $\mathrm{mmol})$. The reaction mixture was stirred at room temperature overnight. The solution was diluted with EtOAc $(50 \mathrm{~mL})$ and washed with saturated $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$. The organic
phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Flash column chromatography of the crude product on silica gel using $0-25 \%$ EtOAc in hexanes afforded $21 \mathrm{~b}(170 \mathrm{mg}, 64 \%)$ as a brown residue: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.56-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-6.98(\mathrm{~m}, 4 \mathrm{H}), 4.89$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.54$ $(\mathrm{s}, 2 \mathrm{H}), 3.06(\mathrm{dd}, J=15.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.50-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}$, $9 \mathrm{H}), 1.10-0.92(\mathrm{~m}, 1 \mathrm{H}), 0.83-0.70(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz ; $\left.\mathrm{CDCl}_{3}\right) \delta 169.9,155.1,154.5,148.3,140.1,135.3,132.0,129.2,122.8$, 121.3, 120.7, 77.9, 52.5, 49.0, 42.9, 37.0, 27.4, 24.2, 14.0, 10.7; MS (ESI) $m / z 490.8[\mathrm{M}+\mathrm{H}]^{+}\left({ }^{79} \mathrm{Br}\right), 492.6[\mathrm{M}+\mathrm{H}]^{+}\left({ }^{81} \mathrm{Br}\right)$.
tert-Butyl [(2S,3S)-1-\{(4'-Propylbiphenyl-4-yl)-[(1R,2R)-2-phenyl-1-cyclopropanecarbonyl]amino\}-3-methylpentan-2-yl]carbamate (22a). The procedure for 15a was followed using $100 \mathrm{mg}(0.19 \mathrm{mmol})$ of 21a and $54 \mathrm{mg}(0.32 \mathrm{mmol})$ of 4-propylphenylboronic acid to give $80 \mathrm{mg}(76 \%)$ of 22a as a white foam: $[\alpha]^{23}{ }_{\mathrm{D}}+71.4^{\circ}\left(c 0.52, \mathrm{CH}_{3} \mathrm{OH}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 7.56(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.01(\mathrm{~m}, 3 \mathrm{H}), 6.94(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 2 \mathrm{H}), 5.08(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-$ $3.72(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=13.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.56(\mathrm{~m}, 3 \mathrm{H})$, $1.76-1.55(\mathrm{~m}, 6 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.18-1.04(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}), 0.93-0.82(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta$ 173.5, $156.4,142.3,141.0,140.7,140.5,137.3,129.0,128.6,128.3,128.1$, 126.9, 126.4, 126.2, 78.7, 54.1, 50.0, 38.2, 37.7, 28.5, 26.1, 25.3, 24.5, 23.9, 17.6, 15.1, 13.8, 11.8; MS (ESI) $m / z 555.8[\mathrm{M}+\mathrm{H}]^{+}$.
tert-Butyl [(2S,3S)-1-\{(4'-Propylbiphenyl-4-yl)[(pyridin-2-yl)-methylcarbonyl]amino\}-3-methylpentan-2-yl]carbamate (22b). The procedure for $\mathbf{1 5 a}$ was followed using $170 \mathrm{mg}(0.35 \mathrm{mmol})$ of $\mathbf{2 1 b}$ and $96 \mathrm{mg}(0.54 \mathrm{mmol})$ of 4-propylphenylboronic acid to give $101 \mathrm{mg}(55 \%)$ of $\mathbf{2 2 b}$ as an oil: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 8.47$ $(\mathrm{d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 765-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.50(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.42-7.08(\mathrm{~m}, 6 \mathrm{H}), 5.08(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.86-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 2 \mathrm{H}), 3.08(\mathrm{dd}, J=15.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.63$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.76-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}$, $9 \mathrm{H}), 1.16-1.02(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.92-0.78(\mathrm{~m}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 171.3,156.2,155.9,149.2,142.4,141.2$, 140.9, 137.3, 130.2, 129.0, 128.7, 128.3, 126.9, 123.9, 121.6, 78.8, 53.7, 49.9, 43.9, 38.0, 37.7, 28.5, 25.3, 24.5, 15.0, 13.8, 11.8; MS (ESI) m / z $530.9[\mathrm{M}+\mathrm{H}]^{+}$.
(1R,2R)-2-Phenyl-1-cyclopropanecarboxylic Acid [(2S,3S)-2-Amino-3-methylpentyl]-(4'-propylbiphenyl-4-yl)amide Hydrochloride (6a). The procedure for 1 was followed using $60 \mathrm{mg}(0.11 \mathrm{mmol})$ of 22 a and 1 mL of 4 M HCl in dioxane to give $52 \mathrm{mg}(96 \%)$ of $\mathbf{6 a}$ as a white solid: mp $112{ }^{\circ} \mathrm{C}$ (fusion); $[\alpha]_{\mathrm{D}}^{23}-5.7^{\circ}\left(c 0.53, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD)} \delta 7.65$ (br d, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.56-7.38$ $(\mathrm{m}, 4 \mathrm{H}), 7.26(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.06(\mathrm{~m}, 3 \mathrm{H}), 6.93(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 2 \mathrm{H}), 4.38-4.22(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.33(\mathrm{~m}, 1 \mathrm{H})$, $2.64(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.54-2.42(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.60(\mathrm{~m}, 4 \mathrm{H})$, $1.50-1.16(\mathrm{~m}, 4 \mathrm{H}), 1.03-0.93(\mathrm{~m}, 6 \mathrm{H}), 0.87(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) \delta 176.0,143.8,142.7,142.0,141.5,138.4$, $130.3,129.8,129.6,129.5,128.0,127.5,127.2,57.0,50.7,38.7,37.3$, 28.1, 26.5, 26.0, 25.7, 17.9, 14.4, 14.2, 11.9; HRMS (ESI) calcd. for $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 455.3057. Found: 455.3061.

2-Pyridylacetic Acid [(2S,3S)-2-Amino-3-methylpentyl]-(4'-pro-pylbiphenyl-4-yl)amide Dihydrochloride (6b). The procedure for 1 was followed using $90 \mathrm{mg}(0.17 \mathrm{mmol})$ of $\mathbf{2 2 b}$ and 2 mL of 4 M HCl in dioxane to give $80 \mathrm{mg}(94 \%)$ of $\mathbf{6 b}$ as a white foam: ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.76(\mathrm{br} \mathrm{d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{br} \mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.92-7.50(\mathrm{~m}, 8 \mathrm{H}), 7.30(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.50-4.38(\mathrm{~m}$, $1 \mathrm{H}), 3.75-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.38(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 1.90-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.50-1.15(\mathrm{~m}, 2 \mathrm{H}), 1.02-0.90(\mathrm{~m}, 6 \mathrm{H})$, $0.84(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$ (Methylene protons overlapped with methanol solvent peak); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 169.6,150.2$, $146.5,142.7,142.2,141.6,139.2,136.8,129.6,129.1,128.9,126.9$, 125.4, 55.2, 48.9, 39.8, 37.7, 35.8, 26.2, 24.4, 14.2, 13.8, 11.4; HRMS (ESI) calcd. for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 430.2853. Found: 430.2860.

Pharmacology. Materials. Isoproterenol was purchased from Sigma-Aldrich, and cell culture reagents (media, supplements, antibiotics, etc.) were purchased from Fisher Scientific. Human

GPR88 cDNA was purchased from Missouri S\&T cDNA Resource Center. The pGloSensor-22F plasmid was purchased from Promega.

Transient Transfection and cAMP Assay. HEK293T cells were transfected with human GPR88 cDNA and pGloSensor-22F overnight and plated in the poly-L-lysine coated 384 -well white clear bottom cell culture plates using DMEM supplemented with 1% dialyzed fetal bovine serum at a density of 15,000 cells in $40 \mu \mathrm{~L}$ medium per well. The cell plates were incubated for $6-20 \mathrm{~h}$ before being used for assays. To measure receptor mediated $\mathrm{G} \alpha_{\mathrm{i}}$-activation, culture medium was removed and assay buffer ($20 \mu \mathrm{~L}$ per well of 20 mM HEPES, $1 \times$ HBSS, pH 7.4) was added, followed by addition of $10 \mu \mathrm{~L}$ of test compound solution at serially diluted concentrations for 15 min at room temperature. After addition of $15 \mu \mathrm{~L}$ of Luciferin (4 mM final) and isoproterenol (200 nM final) and incubation for another 15 min , luminescence was read on the TriLux microbeta counter (PerkinElmer). To measure receptor mediated $\mathrm{G} \alpha_{\mathrm{s}}$-activation, cells were first incubated with test compound for 15 min followed by $15 \mu \mathrm{~L}$ of 4 mM Luciferin for another 15 min , and then luminescence counted as above.

GloSensor cAMP Assay Using Stable GPR88-22F HEK293 Cells. A GPR88-22F stable cell line was created by overexpressing the human GPR88 receptor and the pGloSensor-22F biosensor in HEK293 cells. The day before the assay, GPR88-22F cells were plated into 96 -well white-walled assay plates at a density of 40000 cells per well in culture medium (DMEM-HG supplemented with 10% FBS, 15 mM HEPES, and 100 units of penicillin/streptomycin). The plated cells were incubated overnight at $37{ }^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}$. The next day, the culture medium was gently removed and $100 \mu \mathrm{~L}$ of equilibration medium was gently added per the manufacturer's instructions ($88 \% \mathrm{CO}_{2}$ independent medium, 10\% FBS, 2% GloSensor cAMP reagent). The cells were incubated in the equilibration medium for 2 h at room temperature in the dark. Test compound dilutions were prepared at $11 \times$ concentration in $1 \times$ PBS and $10 \mu \mathrm{~L}$ was added to each appropriate well. Following 10 min at room temperature in the dark, $10 \mu \mathrm{~L}$ of 100 nM (final) isoproterenol (prepared at $12 \times$ concentration in $1 \times$ PBS) was added to each appropriate well. Following 30 min at room temperature in the dark, luminescence was read on the FlexStation III (1000 ms integration time, Molecular Devices).

Data Analysis. Relative luminescence units (RLU) were recorded and plotted against compound concentration. Data were fit to a threeparameter logistic function to generate EC_{50} values using GraphPad Prism software (San Diego, CA).

ASSOCIATED CONTENT

(s) Supporting Information

Copies of HPLC results of $\mathbf{1 - 3}, \mathbf{4 a - i}, 5 \mathbf{a}-\mathbf{e}, \mathbf{6 a}$, and $\mathbf{6 b}$. This material is available free of charge via the Internet at http:// pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Telephone: 919 541-6328. Fax: 919 541-8868. E-mail: cjin@ rti.org.

Funding

We thank the National Institute of Mental Health (NIMH) for supporting the research at Psychoactive Drug Screening Program (PDSP). XPZ is grateful for financial support by NSF (CHE-1152767) and NIH (R01-GM098777).

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Dr. Danni Harris for valuable discussions during the course of this work.

REFERENCES

(1) Mizushima, K., Miyamoto, Y., Tsukahara, F., Hirai, M., Sakaki, Y., and Ito, T. (2000) A novel G-protein-coupled receptor gene expressed in striatum. Genomics 69, 314-321.
(2) (a) Ghate, A., Befort, K., Becker, J. A., Filliol, D., Bole-Feysot, C., Demebele, D., Jost, B., Koch, M., and Kieffer, B. L. (2007) Identification of novel striatal genes by expression profiling in adult mouse brain. Neuroscience 146, 1182-1192. (b) Massart, R., Guilloux, J. P., Mignon, V., Sokoloff, P., and Diaz, J. (2009) Striatal GPR88 expression is confined to the whole projection neuron population and is regulated by dopaminergic and glutamatergic afferents. Eur. J. Neurosci. 30, 397-414. (c) Van Waes, V., Tseng, K. Y., and Steiner, H. (2011) GPR88 - a putative signaling molecule predominantly expressed in the striatum: Cellular localization and developmental regulation. Basal Ganglia 1, 83-89. (d) Becker, J. A., Befort, K., Blad, C., Filliol, D., Ghate, A., Dembele, D., Thibault, C., Koch, M., Muller, J., Lardenois, A., Poch, O., and Kieffer, B. L. (2008) Transcriptome analysis identifies genes with enriched expression in the mouse central extended amygdala. Neuroscience 156, 950-965.
(3) Quintana, A., Sanz, E., Wang, W., Storey, G. P., Guler, A. D., Wanat, M. J., Roller, B. A., La Torre, A., Amieux, P. S., McKnight, G. S., Bamford, N. S., and Palmiter, R. D. (2012) Lack of GPR88 enhances medium spiny neuron activity and alters motor- and cuedependent behaviors. Nat. Neurosci. 15, 1547-1555.
(4) Logue, S. F., Grauer, S. M., Paulsen, J., Graf, R., Taylor, N., Sung, M. A., Zhang, L., Hughes, Z., Pulito, V. L., Liu, F., Rosenzweig-Lipson, S., Brandon, N. J., Marquis, K. L., Bates, B., and Pausch, M. (2009) The orphan GPCR, GPR88, modulates function of the striatal dopamine system: a possible therapeutic target for psychiatric disorders? Mol. Cell Neurosci. 42, 438-447.
(5) Lovinger, D. M. (2012) New twist on orphan receptor GPR88 function. Nat. Neurosci. 15, 1469-1470.
(6) Matsuoka, T., Tsunoda, M., Sumiyoshi, T., Takasaki, I., Tabuchi, Y., Seo, T., Tanaka, K., Uehara, T., Itoh, H., Suzuki, M., and Kurachi, M. (2008) Effect of MK-801 on gene expressions in the amygdala of rats. Synapse 62, 1-7.
(7) (a) Ogden, C. A., Rich, M. E., Schork, N. J., Paulus, M. P., Geyer, M. A., Lohr, J. B., Kuczenski, R., and Niculescu, A. B. (2004) Candidate genes, pathways and mechanisms for bipolar (manicdepressive) and related disorders: an expanded convergent functional genomics approach. Mol. Psychiatry 9, 1007-1029. (b) Brandish, P. E., Su, M., Holder, D. J., Hodor, P., Szumiloski, J., Kleinhanz, R. R., Forbes, J. E., McWhorter, M. E., Duenwald, S. J., Parrish, M. L., Na, S., Liu, Y., Phillips, R. L., Renger, J. J., Sankaranarayanan, S., Simon, A. J., and Scolnick, E. M. (2005) Regulation of gene expression by lithium and depletion of inositol in slices of adult rat cortex. Neuron 45, 861872.
(8) Conti, B., Maier, R., Barr, A. M., Morale, M. C., Lu, X., Sanna, P. P., Bilbe, G., Hoyer, D., and Bartfai, T. (2007) Region-specific transcriptional changes following the three antidepressant treatments electro convulsive therapy, sleep deprivation and fluoxetine. Mol. Psychiatry 12, 167-189.
(9) Befort, K., Filliol, D., Ghate, A., Darcq, E., Matifas, A., Muller, J., Lardenois, A., Thibault, C., Dembele, D., Le Merrer, J., Becker, J. A., Poch, O., and Kieffer, B. L. (2008) Mu-opioid receptor activation induces transcriptional plasticity in the central extended amygdala. Eur. J. Neurosci. 27, 2973-2984.
(10) (a) Bi, Y., Dzierba, C. D., Bronson, J. J., Carson, K., Cianchetta, G., Dong, L., Fink, C., Green, M., Kimball, D., Macor, J. E., Kwon, S., Wang, J., Zhang, Y., Zipp, G. Modulators of G protein-coupled receptor 88. U.S. Patent Application 2011/0245264, 2011;. (b) Bi, Y., Dzierba, C. D., Bronson, J. J., Fink, C., Green, M., Kimball, D., Macor, J. E., Kwon, S., Zhang, Y., and Zipp, G. (2011) Modulators of G protein-coupled receptor 88. U.S. Patent Application 2011/0251204.
(c) Dzierba, C. D., Hartz, R. A., Bi, Y., Ahuja, V. T., Bronson, J. J., Carson, K., Cianchetta, G., Green, M., Kimball, D., Kimura, S. R., Kwon, S., Macor, J. E., Zhang, Y., and Zipp, G. (2011) Modulators of G protein-coupled receptor 88. U.S. Patent Application 2011/ 0251196.
(11) (a) Chen, Y., Fields, K. B., and Zhang, X. P. (2004) Bromoporphyrins as versatile synthons for modular construction of chiral porphyrins: cobalt-catalyzed highly enantioselective and diastereoselective cyclopropanation. J. Am. Chem. Soc. 126, 1471814719. (b) Chen, Y., and Zhang, X. P. (2007) Asymmetric cyclopropanation of styrenes catalyzed by metal complexes of $\mathrm{D}_{2^{-}}$ symmetrical chiral porphyrin: superiority of cobalt over iron. J. Org. Chem. 72, 5931-5934. (c) Chen, Y., Ruppel, J. V., and Zhang, X. P. (2007) Cobalt-catalyzed asymmetric cyclopropanation of electrondeficient olefins. J. Am. Chem. Soc. 129, 12074-12075. (d) Dzik, W. I., Xu, X., Zhang, X. P., Reek, J. N., and de Bruin, B. (2010) "Carbene radicals" in $\mathrm{Co}(\mathrm{II})$ (por)-catalyzed olefin cyclopropanation. J. Am. Chem. Soc. 132, 10891-10902. (e) Lu, H., Dzik, W. I., Xu, X., Wojtas, L., de Bruin, B., and Zhang, X. P. (2011) Experimental evidence for cobalt(II)-carbene radicals: key intermediates in cobalt(II)-based metalloradical cyclopropanation. J. Am. Chem. Soc. 133, 8518-8521.
(12) Cheng, K., Lee, Y. S., Rothman, R. B., Dersch, C. M., Bittman, R. W., Jacobson, A. E., and Rice, K. C. (2011) Probes for narcotic receptor mediated phenomena. 41. Unusual inverse μ-agonists and potent μ-opioid antagonists by modification of the N -substituent in enantiomeric 5-(3-hydroxyphenyl)morphans. J. Med. Chem. 54, 957969.
(13) (a) Allen, J. A., Yost, J. M., Setola, V., Chen, X., Sassano, M. F., Chen, M., Peterson, S., Yadav, P. N., Huang, X. P., Feng, B., Jensen, N. H., Che, X., Bai, X., Frye, S. V., Wetsel, W. C., Caron, M. G., Javitch, J. A., Roth, B. L., and Jin, J. (2011) Discovery of β-arrestin-biased dopamine D2 ligands for probing signal transduction pathways essential for antipsychotic efficacy. Proc. Natl. Acad. Sci. U.S.A. 108, 18488-18493. (b) Besnard, J., Ruda, G. F., Setola, V., Abecassis, K., Rodriguiz, R. M., Huang, X. P., Norval, S., Sassano, M. F., Shin, A. I., Webster, L. A., Simeons, F. R., Stojanovski, L., Prat, A., Seidah, N. G., Constam, D. B., Bickerton, G. R., Read, K. D., Wetsel, W. C., Gilbert, I. H., Roth, B. L., and Hopkins, A. L. (2012) Automated design of ligands to polypharmacological profiles. Nature 492, 215-220.
(14) Wacker, D., Wang, C., Katritch, V., Han, G. W., Huang, X. P., Vardy, E., McCorvy, J. D., Jiang, Y., Chu, M., Siu, F. Y., Liu, W., Xu, H. E., Cherezov, V., Roth, B. L., and Stevens, R. C. (2013) Structural features for functional selectivity at serotonin receptors. Science 340, 615-619.

[^0]: Received: April 14, 2014
 Revised: May 2, 2014
 Published: May 2, 2014

